The mechanisms of contrast formation in non-contact atomic force microscopy on insulating surfaces

This work considers the problem of the prediction and interpretation of atomic resolution in NC-AFM images of ionic surfaces and adsorbed molecules, and the relation between atomic resolution and electronic properties of the system. Several tip models were studied over the MgO(OOl) surface, where mo...

Full description

Bibliographic Details
Main Author: Gal, Andrei Yurievich
Published: University College London (University of London) 2005
Subjects:
Online Access:http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.424906
id ndltd-bl.uk-oai-ethos.bl.uk-424906
record_format oai_dc
spelling ndltd-bl.uk-oai-ethos.bl.uk-4249062015-03-20T03:57:22ZThe mechanisms of contrast formation in non-contact atomic force microscopy on insulating surfacesGal, Andrei Yurievich2005This work considers the problem of the prediction and interpretation of atomic resolution in NC-AFM images of ionic surfaces and adsorbed molecules, and the relation between atomic resolution and electronic properties of the system. Several tip models were studied over the MgO(OOl) surface, where models giving the strongest contrast were selected. The oxide tip model and the model of a Si tip with a dangling bond were used in further investigation of clean surfaces, single adsorbed molecules, and molecular monolayers. Ab initio calculations based on density functional theory were used extensively for static structural optimisation and electronic structure analysis. Atomistic simulations with pair potentials were performed where possible. Interatomic potentials between organic molecules and oxide had to be fitted from the ab initio results. This study predicts that atomic and chemical resolution can be achieved on a clean surface of aluminium oxide for both tip models. It is demonstrated that using the Si tip with an apex dangling bond enables one to provide straightforward chemical interpretation of images on ionic insulating surfaces. The resolution, mechanisms of tip-surface interaction and contrast formation are explained by the study of HCOOH monolayers on a TiC>2(l 10) surface imaged using the Si tip model. An interpretation of previous experimental data on this system is suggested based on the result of this study. The resolution within charged formate ions on MgO(001) and the effect of the adsorbate on the substrate resolution is studied using the oxide tip model. Fundamental questions regarding limits of resolution in surface-adsorbate systems are addressed. Finally, the applicability of NC-AFM techniques for the detection of ionic filling inside single-wall nanotubes, and the interplay between electronic structures of the two systems are investigated.541.33University College London (University of London)http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.424906http://discovery.ucl.ac.uk/1444688/Electronic Thesis or Dissertation
collection NDLTD
sources NDLTD
topic 541.33
spellingShingle 541.33
Gal, Andrei Yurievich
The mechanisms of contrast formation in non-contact atomic force microscopy on insulating surfaces
description This work considers the problem of the prediction and interpretation of atomic resolution in NC-AFM images of ionic surfaces and adsorbed molecules, and the relation between atomic resolution and electronic properties of the system. Several tip models were studied over the MgO(OOl) surface, where models giving the strongest contrast were selected. The oxide tip model and the model of a Si tip with a dangling bond were used in further investigation of clean surfaces, single adsorbed molecules, and molecular monolayers. Ab initio calculations based on density functional theory were used extensively for static structural optimisation and electronic structure analysis. Atomistic simulations with pair potentials were performed where possible. Interatomic potentials between organic molecules and oxide had to be fitted from the ab initio results. This study predicts that atomic and chemical resolution can be achieved on a clean surface of aluminium oxide for both tip models. It is demonstrated that using the Si tip with an apex dangling bond enables one to provide straightforward chemical interpretation of images on ionic insulating surfaces. The resolution, mechanisms of tip-surface interaction and contrast formation are explained by the study of HCOOH monolayers on a TiC>2(l 10) surface imaged using the Si tip model. An interpretation of previous experimental data on this system is suggested based on the result of this study. The resolution within charged formate ions on MgO(001) and the effect of the adsorbate on the substrate resolution is studied using the oxide tip model. Fundamental questions regarding limits of resolution in surface-adsorbate systems are addressed. Finally, the applicability of NC-AFM techniques for the detection of ionic filling inside single-wall nanotubes, and the interplay between electronic structures of the two systems are investigated.
author Gal, Andrei Yurievich
author_facet Gal, Andrei Yurievich
author_sort Gal, Andrei Yurievich
title The mechanisms of contrast formation in non-contact atomic force microscopy on insulating surfaces
title_short The mechanisms of contrast formation in non-contact atomic force microscopy on insulating surfaces
title_full The mechanisms of contrast formation in non-contact atomic force microscopy on insulating surfaces
title_fullStr The mechanisms of contrast formation in non-contact atomic force microscopy on insulating surfaces
title_full_unstemmed The mechanisms of contrast formation in non-contact atomic force microscopy on insulating surfaces
title_sort mechanisms of contrast formation in non-contact atomic force microscopy on insulating surfaces
publisher University College London (University of London)
publishDate 2005
url http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.424906
work_keys_str_mv AT galandreiyurievich themechanismsofcontrastformationinnoncontactatomicforcemicroscopyoninsulatingsurfaces
AT galandreiyurievich mechanismsofcontrastformationinnoncontactatomicforcemicroscopyoninsulatingsurfaces
_version_ 1716782703409364992