Fuzzy and tile coding approximation techniques for coevolution in reinforcement learning
This thesis investigates reinforcement learning algorithms suitable for learning in large state space problems and coevolution. In order to learn in large state spaces, the state space must be collapsed to a computationally feasible size and then generalised about. This thesis presents two new imple...
Main Author: | |
---|---|
Published: |
Queen Mary, University of London
2005
|
Subjects: | |
Online Access: | https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.423157 |
id |
ndltd-bl.uk-oai-ethos.bl.uk-423157 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-bl.uk-oai-ethos.bl.uk-4231572019-02-27T03:23:08ZFuzzy and tile coding approximation techniques for coevolution in reinforcement learningTokarchuk, Laurissa Nadia2005This thesis investigates reinforcement learning algorithms suitable for learning in large state space problems and coevolution. In order to learn in large state spaces, the state space must be collapsed to a computationally feasible size and then generalised about. This thesis presents two new implementations of the classic temporal difference (TD) reinforcement learning algorithm Sarsa that utilise fuzzy logic principles for approximation, FQ Sarsa and Fuzzy Sarsa. The effectiveness of these two fuzzy reinforcement learning algorithms is investigated in the context of an agent marketplace. It presents a practical investigation into the design of fuzzy membership functions and tile coding schemas. A critical analysis of the fuzzy algorithms to a related technique in function approximation, a coarse coding approach called tile coding is given in the context of three different simulation environments; the mountain-car problem, a predator/prey gridworld and an agent marketplace. A further comparison between Fuzzy Sarsa and tile coding in the context of the nonstationary environments of the agent marketplace and predator/prey gridworld is presented. This thesis shows that the Fuzzy Sarsa algorithm achieves a significant reduction of state space over traditional Sarsa, without loss of the finer detail that the FQ Sarsa algorithm experiences. It also shows that Fuzzy Sarsa and gradient descent Sarsa(λ) with tile coding learn similar levels of distinction against a stationary strategy. Finally, this thesis demonstrates that Fuzzy Sarsa performs better in a competitive multiagent domain than the tile coding solution.006.3Electronic EngineeringQueen Mary, University of Londonhttps://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.423157http://qmro.qmul.ac.uk/xmlui/handle/123456789/3822Electronic Thesis or Dissertation |
collection |
NDLTD |
sources |
NDLTD |
topic |
006.3 Electronic Engineering |
spellingShingle |
006.3 Electronic Engineering Tokarchuk, Laurissa Nadia Fuzzy and tile coding approximation techniques for coevolution in reinforcement learning |
description |
This thesis investigates reinforcement learning algorithms suitable for learning in large state space problems and coevolution. In order to learn in large state spaces, the state space must be collapsed to a computationally feasible size and then generalised about. This thesis presents two new implementations of the classic temporal difference (TD) reinforcement learning algorithm Sarsa that utilise fuzzy logic principles for approximation, FQ Sarsa and Fuzzy Sarsa. The effectiveness of these two fuzzy reinforcement learning algorithms is investigated in the context of an agent marketplace. It presents a practical investigation into the design of fuzzy membership functions and tile coding schemas. A critical analysis of the fuzzy algorithms to a related technique in function approximation, a coarse coding approach called tile coding is given in the context of three different simulation environments; the mountain-car problem, a predator/prey gridworld and an agent marketplace. A further comparison between Fuzzy Sarsa and tile coding in the context of the nonstationary environments of the agent marketplace and predator/prey gridworld is presented. This thesis shows that the Fuzzy Sarsa algorithm achieves a significant reduction of state space over traditional Sarsa, without loss of the finer detail that the FQ Sarsa algorithm experiences. It also shows that Fuzzy Sarsa and gradient descent Sarsa(λ) with tile coding learn similar levels of distinction against a stationary strategy. Finally, this thesis demonstrates that Fuzzy Sarsa performs better in a competitive multiagent domain than the tile coding solution. |
author |
Tokarchuk, Laurissa Nadia |
author_facet |
Tokarchuk, Laurissa Nadia |
author_sort |
Tokarchuk, Laurissa Nadia |
title |
Fuzzy and tile coding approximation techniques for coevolution in reinforcement learning |
title_short |
Fuzzy and tile coding approximation techniques for coevolution in reinforcement learning |
title_full |
Fuzzy and tile coding approximation techniques for coevolution in reinforcement learning |
title_fullStr |
Fuzzy and tile coding approximation techniques for coevolution in reinforcement learning |
title_full_unstemmed |
Fuzzy and tile coding approximation techniques for coevolution in reinforcement learning |
title_sort |
fuzzy and tile coding approximation techniques for coevolution in reinforcement learning |
publisher |
Queen Mary, University of London |
publishDate |
2005 |
url |
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.423157 |
work_keys_str_mv |
AT tokarchuklaurissanadia fuzzyandtilecodingapproximationtechniquesforcoevolutioninreinforcementlearning |
_version_ |
1718983946413277184 |