Fuzzy and tile coding approximation techniques for coevolution in reinforcement learning

This thesis investigates reinforcement learning algorithms suitable for learning in large state space problems and coevolution. In order to learn in large state spaces, the state space must be collapsed to a computationally feasible size and then generalised about. This thesis presents two new imple...

Full description

Bibliographic Details
Main Author: Tokarchuk, Laurissa Nadia
Published: Queen Mary, University of London 2005
Subjects:
Online Access:https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.423157
id ndltd-bl.uk-oai-ethos.bl.uk-423157
record_format oai_dc
spelling ndltd-bl.uk-oai-ethos.bl.uk-4231572019-02-27T03:23:08ZFuzzy and tile coding approximation techniques for coevolution in reinforcement learningTokarchuk, Laurissa Nadia2005This thesis investigates reinforcement learning algorithms suitable for learning in large state space problems and coevolution. In order to learn in large state spaces, the state space must be collapsed to a computationally feasible size and then generalised about. This thesis presents two new implementations of the classic temporal difference (TD) reinforcement learning algorithm Sarsa that utilise fuzzy logic principles for approximation, FQ Sarsa and Fuzzy Sarsa. The effectiveness of these two fuzzy reinforcement learning algorithms is investigated in the context of an agent marketplace. It presents a practical investigation into the design of fuzzy membership functions and tile coding schemas. A critical analysis of the fuzzy algorithms to a related technique in function approximation, a coarse coding approach called tile coding is given in the context of three different simulation environments; the mountain-car problem, a predator/prey gridworld and an agent marketplace. A further comparison between Fuzzy Sarsa and tile coding in the context of the nonstationary environments of the agent marketplace and predator/prey gridworld is presented. This thesis shows that the Fuzzy Sarsa algorithm achieves a significant reduction of state space over traditional Sarsa, without loss of the finer detail that the FQ Sarsa algorithm experiences. It also shows that Fuzzy Sarsa and gradient descent Sarsa(λ) with tile coding learn similar levels of distinction against a stationary strategy. Finally, this thesis demonstrates that Fuzzy Sarsa performs better in a competitive multiagent domain than the tile coding solution.006.3Electronic EngineeringQueen Mary, University of Londonhttps://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.423157http://qmro.qmul.ac.uk/xmlui/handle/123456789/3822Electronic Thesis or Dissertation
collection NDLTD
sources NDLTD
topic 006.3
Electronic Engineering
spellingShingle 006.3
Electronic Engineering
Tokarchuk, Laurissa Nadia
Fuzzy and tile coding approximation techniques for coevolution in reinforcement learning
description This thesis investigates reinforcement learning algorithms suitable for learning in large state space problems and coevolution. In order to learn in large state spaces, the state space must be collapsed to a computationally feasible size and then generalised about. This thesis presents two new implementations of the classic temporal difference (TD) reinforcement learning algorithm Sarsa that utilise fuzzy logic principles for approximation, FQ Sarsa and Fuzzy Sarsa. The effectiveness of these two fuzzy reinforcement learning algorithms is investigated in the context of an agent marketplace. It presents a practical investigation into the design of fuzzy membership functions and tile coding schemas. A critical analysis of the fuzzy algorithms to a related technique in function approximation, a coarse coding approach called tile coding is given in the context of three different simulation environments; the mountain-car problem, a predator/prey gridworld and an agent marketplace. A further comparison between Fuzzy Sarsa and tile coding in the context of the nonstationary environments of the agent marketplace and predator/prey gridworld is presented. This thesis shows that the Fuzzy Sarsa algorithm achieves a significant reduction of state space over traditional Sarsa, without loss of the finer detail that the FQ Sarsa algorithm experiences. It also shows that Fuzzy Sarsa and gradient descent Sarsa(λ) with tile coding learn similar levels of distinction against a stationary strategy. Finally, this thesis demonstrates that Fuzzy Sarsa performs better in a competitive multiagent domain than the tile coding solution.
author Tokarchuk, Laurissa Nadia
author_facet Tokarchuk, Laurissa Nadia
author_sort Tokarchuk, Laurissa Nadia
title Fuzzy and tile coding approximation techniques for coevolution in reinforcement learning
title_short Fuzzy and tile coding approximation techniques for coevolution in reinforcement learning
title_full Fuzzy and tile coding approximation techniques for coevolution in reinforcement learning
title_fullStr Fuzzy and tile coding approximation techniques for coevolution in reinforcement learning
title_full_unstemmed Fuzzy and tile coding approximation techniques for coevolution in reinforcement learning
title_sort fuzzy and tile coding approximation techniques for coevolution in reinforcement learning
publisher Queen Mary, University of London
publishDate 2005
url https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.423157
work_keys_str_mv AT tokarchuklaurissanadia fuzzyandtilecodingapproximationtechniquesforcoevolutioninreinforcementlearning
_version_ 1718983946413277184