Mechanochemical synthesis of magnesium-based hydrogen storage materials

A systematic investigation of the structural stability, evolution and hydrogenstorage properties of Mg-based hydrides was carried out, involving mechanical milling and chemical alloying. The effects of milling on particle size, lattice parameter, microstructure, and phase composition of the powder m...

Full description

Bibliographic Details
Main Author: Shang, Congxiao
Published: Queen Mary, University of London 2003
Subjects:
Online Access:https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.407082
id ndltd-bl.uk-oai-ethos.bl.uk-407082
record_format oai_dc
spelling ndltd-bl.uk-oai-ethos.bl.uk-4070822019-02-27T03:24:15ZMechanochemical synthesis of magnesium-based hydrogen storage materialsShang, Congxiao2003A systematic investigation of the structural stability, evolution and hydrogenstorage properties of Mg-based hydrides was carried out, involving mechanical milling and chemical alloying. The effects of milling on particle size, lattice parameter, microstructure, and phase composition of the powder mixtures were characterised using SEM, X-Ray diffraction and quantitative Rietveld analyses. Mechanical milling was shown to be an effective method of refining the particle size, particularly when MgH2 is involved. The influences of the selected chemical elements, including transition metals, graphite carbon and rare-earth metals, on hydrogen desorption/absorption of various milled mixtures were clearly identified using coupled Thermogravimetry (TG) and Differential Scanning Calorimetry (DSC). The as-received MgH2 shows an onset desorption temperature of 420°C. Mechanical milling reduces the onset temperature to 330°C. Chemical alloying, via surface catalysis and/or solid-solutioning, further increases the desorption kinetics and reduces the desorption temperature down to 250°C. The degree of such effect decreases from Ni, Al, Fe, Nb, Ti, to Cu. Further comparison of desorption characteristics of MgH2 mixed and mechanically alloyed with Ni clearly shows that the kinetic improvement and the effective reduction of the desorption temperature is mainly due to a catalytic effect, rather than solid-solutioning of Ni. Although posing little influence on desorption characteristics, graphite improves the absorption behaviour of MgH2. The rare earth metals, Y and Ce, do not seem to influence hydrogen desorption of MgH2 due to the formation of stable hydride phases, but CeO2 in the (MgH2+Ce) mixture provides a beneficial effect on desorption kinetics. Multi-component mixtures of (MgH2+15Fe+5Ce) and (MgH2+Al+Ni+Y+Ce) exhibit relatively fast desorption kinetics and the lowest desorption temperature at about 240°C and 220°C, respectively. Finally, mechanical alloying of the non-stoichiometric compositions of (3MgH2+Fe) and (4MgH2+Fe) effectively generated a new ternary hydride, Mg2FeH6, with a very high yield of about 80wt% from the (3MgH2+Fe) mixture, which is a promising candidate for heat-storage. The research findings laid a clear and valuable foundation for future development of new and cost-effective Mgbased hydrogen storage materials with a high capacity, a low desorption temperature and rapid kinetics.660.2844Materials ScienceQueen Mary, University of Londonhttps://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.407082http://qmro.qmul.ac.uk/xmlui/handle/123456789/1809Electronic Thesis or Dissertation
collection NDLTD
sources NDLTD
topic 660.2844
Materials Science
spellingShingle 660.2844
Materials Science
Shang, Congxiao
Mechanochemical synthesis of magnesium-based hydrogen storage materials
description A systematic investigation of the structural stability, evolution and hydrogenstorage properties of Mg-based hydrides was carried out, involving mechanical milling and chemical alloying. The effects of milling on particle size, lattice parameter, microstructure, and phase composition of the powder mixtures were characterised using SEM, X-Ray diffraction and quantitative Rietveld analyses. Mechanical milling was shown to be an effective method of refining the particle size, particularly when MgH2 is involved. The influences of the selected chemical elements, including transition metals, graphite carbon and rare-earth metals, on hydrogen desorption/absorption of various milled mixtures were clearly identified using coupled Thermogravimetry (TG) and Differential Scanning Calorimetry (DSC). The as-received MgH2 shows an onset desorption temperature of 420°C. Mechanical milling reduces the onset temperature to 330°C. Chemical alloying, via surface catalysis and/or solid-solutioning, further increases the desorption kinetics and reduces the desorption temperature down to 250°C. The degree of such effect decreases from Ni, Al, Fe, Nb, Ti, to Cu. Further comparison of desorption characteristics of MgH2 mixed and mechanically alloyed with Ni clearly shows that the kinetic improvement and the effective reduction of the desorption temperature is mainly due to a catalytic effect, rather than solid-solutioning of Ni. Although posing little influence on desorption characteristics, graphite improves the absorption behaviour of MgH2. The rare earth metals, Y and Ce, do not seem to influence hydrogen desorption of MgH2 due to the formation of stable hydride phases, but CeO2 in the (MgH2+Ce) mixture provides a beneficial effect on desorption kinetics. Multi-component mixtures of (MgH2+15Fe+5Ce) and (MgH2+Al+Ni+Y+Ce) exhibit relatively fast desorption kinetics and the lowest desorption temperature at about 240°C and 220°C, respectively. Finally, mechanical alloying of the non-stoichiometric compositions of (3MgH2+Fe) and (4MgH2+Fe) effectively generated a new ternary hydride, Mg2FeH6, with a very high yield of about 80wt% from the (3MgH2+Fe) mixture, which is a promising candidate for heat-storage. The research findings laid a clear and valuable foundation for future development of new and cost-effective Mgbased hydrogen storage materials with a high capacity, a low desorption temperature and rapid kinetics.
author Shang, Congxiao
author_facet Shang, Congxiao
author_sort Shang, Congxiao
title Mechanochemical synthesis of magnesium-based hydrogen storage materials
title_short Mechanochemical synthesis of magnesium-based hydrogen storage materials
title_full Mechanochemical synthesis of magnesium-based hydrogen storage materials
title_fullStr Mechanochemical synthesis of magnesium-based hydrogen storage materials
title_full_unstemmed Mechanochemical synthesis of magnesium-based hydrogen storage materials
title_sort mechanochemical synthesis of magnesium-based hydrogen storage materials
publisher Queen Mary, University of London
publishDate 2003
url https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.407082
work_keys_str_mv AT shangcongxiao mechanochemicalsynthesisofmagnesiumbasedhydrogenstoragematerials
_version_ 1718983942296567808