Summary: | Many natural phenomena may be modelled using systems of differential equations that possess symmetry. Often the modelling process introduces additional symmetries that are only approximately present in the real physical system. This thesis investigates how the inclusion of small symmetry breaking effects changes the behaviour of the original solutions, such a process is called forced symmetry breaking. Part I introduces the general equivariant bifurcation theory required for the rest of this work. In particular, we generalise previous techniques used to study forced symmetry breaking to a certain class of Euclidean invariant problems. This allows the study of the effects of forced symmetry breaking on spatially periodic solutions to differential equations. Part II considers spatially periodic solutions in two dimensions that are supported by the square or hexagonal lattices. The methods of Part I are applied to investigate how the translation free solutions, supported by these lattices, are altered when the perturbation term possesses certain symmetries. This leads to a partial classification theorem, describing the behaviour of these solutions. This classification is extended in Part III to three-dimensional solutions. In particular, the cubic lattices: simple, face centred, and body centred cubic, are considered. The analysis follows the same lines as Part II, but is necessarily more complex. This complexity is also present in the results, there are much richer dynamical possibilities. Parts II and III lead to a partial classification of the behaviour of spatially periodic solutions to differential equations in two and three dimensions. Finally in Part IV the results of Part III, concerning the body centred cubic lattice, are applied to the black-eye Turing instability. In particular, the model of Gomes [39] is cast in a new light where forced symmetry breaking is present, leading to several qualitative predictions. Nonlinear optical systems and the Polyacrylamide-Methylene Blue-Oxygen reaction are also discussed.
|