Strain rate behaviour of thermoplastic polymers

Polymers are increasingly used in structures that have to withstand impact conditions. This thesis describes an investigation of strain rate properties at room temperature of four engineering polymers; polyethylene (high density, HDPE and ultra high molecular weight, UHMWPE), nylatron and polyethere...

Full description

Bibliographic Details
Main Author: Al-Maliky, Noori Sabih Jarrih
Published: Loughborough University 1997
Subjects:
Online Access:http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.389614
id ndltd-bl.uk-oai-ethos.bl.uk-389614
record_format oai_dc
spelling ndltd-bl.uk-oai-ethos.bl.uk-3896142015-03-20T04:26:27ZStrain rate behaviour of thermoplastic polymersAl-Maliky, Noori Sabih Jarrih1997Polymers are increasingly used in structures that have to withstand impact conditions. This thesis describes an investigation of strain rate properties at room temperature of four engineering polymers; polyethylene (high density, HDPE and ultra high molecular weight, UHMWPE), nylatron and polyetheretherketone (PEEK 150g). A split Hopkinson pressure bar (SHPB) system was used to study the response of these polymers in compression tests at high strain rates up to 10' S-1. Stress equilibrium in SHPB samples was studied theoretically by examining multiple reflection effects during the initial elastic loading of the polymers; this study proved very useful in the analysis of SHPB tests. To cover a wide range of strain rate, compression studies were also made at low strain rates (10-3 _10-2 S-1) using a Hounsfield screw machine. Viscoelastic models have been applied to these results. These models fit quite well with the experimental results of HDPE, UHMWPE, and nylatron, but not to the PEEK due to the yield drop in the stress - strain curves, especially at high strain rates. An exploding wire technique was used as an axial impulsive loading system for hollow cylindrical samples. An image converter camera at framing intervals of 21ls or 10 Ils recorded the radial expansion of the cylinder. The expanding cylinder was used as a driving system for a new technique called the freely expanding ring method, which was used to obtain the stress - strain behaviour of polymeric thin rings placed as a sliding fit on the cylinder. This method produced very high tensile strain rates up to fracture (> 10' S-1). Comparisons have been made between results obtained from the quasi-static, SHPB, and expanding ring tests. The freely expanding ring and SHPB results were in good agreement indicating similar tensile and compressive high strain rate behaviour. The mechanical properties of the above polymers are strongly dependent on strain rate. The Young's modulus and the flow stress increase with increasing strain rate. Nylatron showed high strain rate strain softening at high strain, this was due to the high temperature rise during loading, when the transition temperature (Tg) of the material (50 QC) was exceeded. However, the other materials showed continuous hardening behaviour. Plots of the flow stress at 5% and 10% strain vs log strain rate showed a linear increase up to a strain rate of about 103 S-1. Above 103 s-1, the stress rose more rapidly, but then showed significant drops for nylatron and PEEK. These drops in stress are probably due to both micro crack initiation in the sample and also high temperatures around the crack tips.668.4Elastic behaviourLoughborough Universityhttp://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.389614https://dspace.lboro.ac.uk/2134/11570Electronic Thesis or Dissertation
collection NDLTD
sources NDLTD
topic 668.4
Elastic behaviour
spellingShingle 668.4
Elastic behaviour
Al-Maliky, Noori Sabih Jarrih
Strain rate behaviour of thermoplastic polymers
description Polymers are increasingly used in structures that have to withstand impact conditions. This thesis describes an investigation of strain rate properties at room temperature of four engineering polymers; polyethylene (high density, HDPE and ultra high molecular weight, UHMWPE), nylatron and polyetheretherketone (PEEK 150g). A split Hopkinson pressure bar (SHPB) system was used to study the response of these polymers in compression tests at high strain rates up to 10' S-1. Stress equilibrium in SHPB samples was studied theoretically by examining multiple reflection effects during the initial elastic loading of the polymers; this study proved very useful in the analysis of SHPB tests. To cover a wide range of strain rate, compression studies were also made at low strain rates (10-3 _10-2 S-1) using a Hounsfield screw machine. Viscoelastic models have been applied to these results. These models fit quite well with the experimental results of HDPE, UHMWPE, and nylatron, but not to the PEEK due to the yield drop in the stress - strain curves, especially at high strain rates. An exploding wire technique was used as an axial impulsive loading system for hollow cylindrical samples. An image converter camera at framing intervals of 21ls or 10 Ils recorded the radial expansion of the cylinder. The expanding cylinder was used as a driving system for a new technique called the freely expanding ring method, which was used to obtain the stress - strain behaviour of polymeric thin rings placed as a sliding fit on the cylinder. This method produced very high tensile strain rates up to fracture (> 10' S-1). Comparisons have been made between results obtained from the quasi-static, SHPB, and expanding ring tests. The freely expanding ring and SHPB results were in good agreement indicating similar tensile and compressive high strain rate behaviour. The mechanical properties of the above polymers are strongly dependent on strain rate. The Young's modulus and the flow stress increase with increasing strain rate. Nylatron showed high strain rate strain softening at high strain, this was due to the high temperature rise during loading, when the transition temperature (Tg) of the material (50 QC) was exceeded. However, the other materials showed continuous hardening behaviour. Plots of the flow stress at 5% and 10% strain vs log strain rate showed a linear increase up to a strain rate of about 103 S-1. Above 103 s-1, the stress rose more rapidly, but then showed significant drops for nylatron and PEEK. These drops in stress are probably due to both micro crack initiation in the sample and also high temperatures around the crack tips.
author Al-Maliky, Noori Sabih Jarrih
author_facet Al-Maliky, Noori Sabih Jarrih
author_sort Al-Maliky, Noori Sabih Jarrih
title Strain rate behaviour of thermoplastic polymers
title_short Strain rate behaviour of thermoplastic polymers
title_full Strain rate behaviour of thermoplastic polymers
title_fullStr Strain rate behaviour of thermoplastic polymers
title_full_unstemmed Strain rate behaviour of thermoplastic polymers
title_sort strain rate behaviour of thermoplastic polymers
publisher Loughborough University
publishDate 1997
url http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.389614
work_keys_str_mv AT almalikynoorisabihjarrih strainratebehaviourofthermoplasticpolymers
_version_ 1716784854939467776