Some effects of magnetic fields on energy deposition in tissue for low-let radiations

The presence of a moderately strong magnetic field, uniform and static, in the irradiated medium modifies the spatial distribution of events. The imposition of a magnetic field produces elecron helices, characterised by their radii and pitches. The differential and integral distribution of track len...

Full description

Bibliographic Details
Main Author: Ismail, A. K. A. A.
Published: University of Aberdeen 1986
Subjects:
Online Access:http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.377616
id ndltd-bl.uk-oai-ethos.bl.uk-377616
record_format oai_dc
spelling ndltd-bl.uk-oai-ethos.bl.uk-3776162015-03-19T07:49:43ZSome effects of magnetic fields on energy deposition in tissue for low-let radiationsIsmail, A. K. A. A.1986The presence of a moderately strong magnetic field, uniform and static, in the irradiated medium modifies the spatial distribution of events. The imposition of a magnetic field produces elecron helices, characterised by their radii and pitches. The differential and integral distribution of track lengths, corresponding to electrons slowing down in water in a magnetic field, have been computed as function of radii and pitches for 200 kVp X-rays and for <sup>60</sup> Co gamma-rays. Theoretical work has shown that the probability of energy deposition in a smaller volume of the absorbing medium has been significantly increased as a result of the presence of a magnetic field during photon irradiation. The distributions of track lengths as function of electron radii and pitches have been studied in strong magnetic fields (1 - 20 Tesla). The trajectories of an electron moving in water for different emission angles (up to π/2) and for magnetic fields of 5 and 10 Tesla, have been computed. The data for stopping powers used in this study, cover electron energies of 30 eV to 1200 keV (initial energy). In the presence of a magnetic field, each electron spiral has enclosed a conical volume. As the magnetic field increases, so the volume enclosed by the spiral decrease resulting in a substantial increase in the number of hits (events) compared with events in the same volume in the absence of a magnetic field. The experimental work started with the study of the characteristics of a spherical walled proportional counter. The frequency density, y.f(y), energy probability density, y^2f(y), distributions and their averages overline Y_F and overline Y<sub>D</sub> respectively, have been computed on the basis of the pulse height distribution of low-LET radiation. Gamma rays from <sup>137</sup>Cs and <sup>60</sup>Co have been used with and without a magnetic field. Transverse magnetic fields of 0.0304, 0.13, 0.24 and 0.34 Tesla as well as a longitudinal magnetic field of 0.0304 Tesla have been used in microdosimetric measurements. An average sphere diameter of 2 μm has been simulated for the purpose. In the presence of the transverse magnetic fields, an increase of up to ~ 45% and ~ 78% has been obtained in the values of overline Y_F and overline Y_D respectively for ^137Cs gamma rays. For ^60Co gamma rays the values of both overline Y_F and overline Y_D increase by up to about 97%. For the longitudinal magnetic field when compared with the corresponding transversal magnetic field, a substantial increase in the value of overline Y_F has been found for ^137Cs gamma rays and a less significant increase for ^60Co gamma rays. Also, a significant increase in overline Y_D has been obtained for both indirectly ionizing radiations.571.45Radiotherapy in magnetic fieldUniversity of Aberdeenhttp://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.377616Electronic Thesis or Dissertation
collection NDLTD
sources NDLTD
topic 571.45
Radiotherapy in magnetic field
spellingShingle 571.45
Radiotherapy in magnetic field
Ismail, A. K. A. A.
Some effects of magnetic fields on energy deposition in tissue for low-let radiations
description The presence of a moderately strong magnetic field, uniform and static, in the irradiated medium modifies the spatial distribution of events. The imposition of a magnetic field produces elecron helices, characterised by their radii and pitches. The differential and integral distribution of track lengths, corresponding to electrons slowing down in water in a magnetic field, have been computed as function of radii and pitches for 200 kVp X-rays and for <sup>60</sup> Co gamma-rays. Theoretical work has shown that the probability of energy deposition in a smaller volume of the absorbing medium has been significantly increased as a result of the presence of a magnetic field during photon irradiation. The distributions of track lengths as function of electron radii and pitches have been studied in strong magnetic fields (1 - 20 Tesla). The trajectories of an electron moving in water for different emission angles (up to π/2) and for magnetic fields of 5 and 10 Tesla, have been computed. The data for stopping powers used in this study, cover electron energies of 30 eV to 1200 keV (initial energy). In the presence of a magnetic field, each electron spiral has enclosed a conical volume. As the magnetic field increases, so the volume enclosed by the spiral decrease resulting in a substantial increase in the number of hits (events) compared with events in the same volume in the absence of a magnetic field. The experimental work started with the study of the characteristics of a spherical walled proportional counter. The frequency density, y.f(y), energy probability density, y^2f(y), distributions and their averages overline Y_F and overline Y<sub>D</sub> respectively, have been computed on the basis of the pulse height distribution of low-LET radiation. Gamma rays from <sup>137</sup>Cs and <sup>60</sup>Co have been used with and without a magnetic field. Transverse magnetic fields of 0.0304, 0.13, 0.24 and 0.34 Tesla as well as a longitudinal magnetic field of 0.0304 Tesla have been used in microdosimetric measurements. An average sphere diameter of 2 μm has been simulated for the purpose. In the presence of the transverse magnetic fields, an increase of up to ~ 45% and ~ 78% has been obtained in the values of overline Y_F and overline Y_D respectively for ^137Cs gamma rays. For ^60Co gamma rays the values of both overline Y_F and overline Y_D increase by up to about 97%. For the longitudinal magnetic field when compared with the corresponding transversal magnetic field, a substantial increase in the value of overline Y_F has been found for ^137Cs gamma rays and a less significant increase for ^60Co gamma rays. Also, a significant increase in overline Y_D has been obtained for both indirectly ionizing radiations.
author Ismail, A. K. A. A.
author_facet Ismail, A. K. A. A.
author_sort Ismail, A. K. A. A.
title Some effects of magnetic fields on energy deposition in tissue for low-let radiations
title_short Some effects of magnetic fields on energy deposition in tissue for low-let radiations
title_full Some effects of magnetic fields on energy deposition in tissue for low-let radiations
title_fullStr Some effects of magnetic fields on energy deposition in tissue for low-let radiations
title_full_unstemmed Some effects of magnetic fields on energy deposition in tissue for low-let radiations
title_sort some effects of magnetic fields on energy deposition in tissue for low-let radiations
publisher University of Aberdeen
publishDate 1986
url http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.377616
work_keys_str_mv AT ismailakaa someeffectsofmagneticfieldsonenergydepositionintissueforlowletradiations
_version_ 1716759228273655808