The shock response of submerged masts
A study of the response of submerged mast-like structures to shock loads has been carried out. An analytical model has been developed which uses a lumped parameter system whose equations of motion are solved by the use of finite difference time integration techniques. The effects of the stiffness an...
Main Author: | |
---|---|
Published: |
University of Surrey
1986
|
Subjects: | |
Online Access: | https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.374620 |
id |
ndltd-bl.uk-oai-ethos.bl.uk-374620 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-bl.uk-oai-ethos.bl.uk-3746202018-09-11T03:20:01ZThe shock response of submerged mastsKenchington, Christopher James1986A study of the response of submerged mast-like structures to shock loads has been carried out. An analytical model has been developed which uses a lumped parameter system whose equations of motion are solved by the use of finite difference time integration techniques. The effects of the stiffness and damping inherent in the supporting restraints are successfully included into the analysis by assuming that they provide linear rotational stiffness and a viscous type of damping. An analysis of hydrodynamic interaction effects has been developed in order to investigate how the frequency response of the structure is affected by submergence. Changes in both the frequency and the damping characteristics are predicted as a function of the depth of submergence. Methods of incorporation of these hydrodynamic forces into the time domain solution of the lumped mass system are investigated and are found to be most accurate for slender structures. In order to develop a fuller understanding of the hydrodynamic response, two experimental investigations have been carried out. The first is laboratory based and uses carefully controlled free vibration tests to excite a number of modal frequencies of a rigidly clamped vertical mast in both submerged and partially submerged conditions. Results show that the frequency changes are closely predicted by the hydrodynamic analysis developed in this thesis and also show that hydrodynamic damping is a linear function of amplitude of deflection for the first natural response mode over the mast's elastic range of response. To investigate the shock response of submerged structures, a second test rig is used to subject a slender mast to a shock load radiating from an underwater explosion. The structural significance of the higher modal frequencies is evaluated through the use of Fourier Analysis and digital filtering techniques. The instrumentation performance including both damped and undamped transducers is assessed in order to make recommendations for future shock trials. The experimental investigation has shown that both the direct pressure loading and the movement of the supports are important factors in the mast response and that their combination produces important high frequency response modes.624.1Shock load structure studyUniversity of Surreyhttps://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.374620http://epubs.surrey.ac.uk/847588/Electronic Thesis or Dissertation |
collection |
NDLTD |
sources |
NDLTD |
topic |
624.1 Shock load structure study |
spellingShingle |
624.1 Shock load structure study Kenchington, Christopher James The shock response of submerged masts |
description |
A study of the response of submerged mast-like structures to shock loads has been carried out. An analytical model has been developed which uses a lumped parameter system whose equations of motion are solved by the use of finite difference time integration techniques. The effects of the stiffness and damping inherent in the supporting restraints are successfully included into the analysis by assuming that they provide linear rotational stiffness and a viscous type of damping. An analysis of hydrodynamic interaction effects has been developed in order to investigate how the frequency response of the structure is affected by submergence. Changes in both the frequency and the damping characteristics are predicted as a function of the depth of submergence. Methods of incorporation of these hydrodynamic forces into the time domain solution of the lumped mass system are investigated and are found to be most accurate for slender structures. In order to develop a fuller understanding of the hydrodynamic response, two experimental investigations have been carried out. The first is laboratory based and uses carefully controlled free vibration tests to excite a number of modal frequencies of a rigidly clamped vertical mast in both submerged and partially submerged conditions. Results show that the frequency changes are closely predicted by the hydrodynamic analysis developed in this thesis and also show that hydrodynamic damping is a linear function of amplitude of deflection for the first natural response mode over the mast's elastic range of response. To investigate the shock response of submerged structures, a second test rig is used to subject a slender mast to a shock load radiating from an underwater explosion. The structural significance of the higher modal frequencies is evaluated through the use of Fourier Analysis and digital filtering techniques. The instrumentation performance including both damped and undamped transducers is assessed in order to make recommendations for future shock trials. The experimental investigation has shown that both the direct pressure loading and the movement of the supports are important factors in the mast response and that their combination produces important high frequency response modes. |
author |
Kenchington, Christopher James |
author_facet |
Kenchington, Christopher James |
author_sort |
Kenchington, Christopher James |
title |
The shock response of submerged masts |
title_short |
The shock response of submerged masts |
title_full |
The shock response of submerged masts |
title_fullStr |
The shock response of submerged masts |
title_full_unstemmed |
The shock response of submerged masts |
title_sort |
shock response of submerged masts |
publisher |
University of Surrey |
publishDate |
1986 |
url |
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.374620 |
work_keys_str_mv |
AT kenchingtonchristopherjames theshockresponseofsubmergedmasts AT kenchingtonchristopherjames shockresponseofsubmergedmasts |
_version_ |
1718732292844683264 |