A study of some electroactive, thin organic films prepared by plasma and electrochemical techniques

Electron Spectroscopy for Chemical Applications (ESCA) and Cyclic Voltaimnetry (CV) have been used to study the surface and electro chemistries of electroactive, thin organic films. A method is developed for the preparation of such films by the synthesis of a molecule containing both an electroactiv...

Full description

Bibliographic Details
Main Author: Eaves, Jeffrey Graham
Published: Durham University 1986
Subjects:
541
Online Access:http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.372490
id ndltd-bl.uk-oai-ethos.bl.uk-372490
record_format oai_dc
spelling ndltd-bl.uk-oai-ethos.bl.uk-3724902015-03-19T05:34:13ZA study of some electroactive, thin organic films prepared by plasma and electrochemical techniquesEaves, Jeffrey Graham1986Electron Spectroscopy for Chemical Applications (ESCA) and Cyclic Voltaimnetry (CV) have been used to study the surface and electro chemistries of electroactive, thin organic films. A method is developed for the preparation of such films by the synthesis of a molecule containing both an electroactive centre (ferrocene or iron (II) or ruthenium (II) trisbipyridyl) bonded to an electro-polymerizable unit (pyrrole). The surface chemistries of polypyrrole, polyaniline and electrodes potentiostatted in ferrocene solutions were also investigated and results corpared to previous studies where possible. The poly-Ru(II)- and particularly the poly-Fe(II)- films are stable to electrochemical cycling between the +2 and +3 oxidation states. The poly-Fe(II)-, and probably the poly-Ru(II)-, trisbipyridyl films have charge transfer diffusion coefficients similar to those previously reported for other films containing similar redox centres. Redox conductivity has been demonstrated for an aged sample of the poly-Fe(II)- film. Electroactive films, prepared by two different methods of plasma polymerization of substituted ferrocene moncsners are described. In each case the ferrocene/ferricenium electroactivity is degraded, by repeated potential cycling. The incorporation of ferrocene into a plasma polymer does not necessarily produce an electroactive film. A preliminary investigation of the surface and electrochemistry of electrode deposits, prepared by cathodic reduction of perfluorocyclo-pentene, is described. The deposits appear similar in some respects to cathodically reduced PTFE.541Physical chemistryDurham Universityhttp://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.372490http://etheses.dur.ac.uk/6881/Electronic Thesis or Dissertation
collection NDLTD
sources NDLTD
topic 541
Physical chemistry
spellingShingle 541
Physical chemistry
Eaves, Jeffrey Graham
A study of some electroactive, thin organic films prepared by plasma and electrochemical techniques
description Electron Spectroscopy for Chemical Applications (ESCA) and Cyclic Voltaimnetry (CV) have been used to study the surface and electro chemistries of electroactive, thin organic films. A method is developed for the preparation of such films by the synthesis of a molecule containing both an electroactive centre (ferrocene or iron (II) or ruthenium (II) trisbipyridyl) bonded to an electro-polymerizable unit (pyrrole). The surface chemistries of polypyrrole, polyaniline and electrodes potentiostatted in ferrocene solutions were also investigated and results corpared to previous studies where possible. The poly-Ru(II)- and particularly the poly-Fe(II)- films are stable to electrochemical cycling between the +2 and +3 oxidation states. The poly-Fe(II)-, and probably the poly-Ru(II)-, trisbipyridyl films have charge transfer diffusion coefficients similar to those previously reported for other films containing similar redox centres. Redox conductivity has been demonstrated for an aged sample of the poly-Fe(II)- film. Electroactive films, prepared by two different methods of plasma polymerization of substituted ferrocene moncsners are described. In each case the ferrocene/ferricenium electroactivity is degraded, by repeated potential cycling. The incorporation of ferrocene into a plasma polymer does not necessarily produce an electroactive film. A preliminary investigation of the surface and electrochemistry of electrode deposits, prepared by cathodic reduction of perfluorocyclo-pentene, is described. The deposits appear similar in some respects to cathodically reduced PTFE.
author Eaves, Jeffrey Graham
author_facet Eaves, Jeffrey Graham
author_sort Eaves, Jeffrey Graham
title A study of some electroactive, thin organic films prepared by plasma and electrochemical techniques
title_short A study of some electroactive, thin organic films prepared by plasma and electrochemical techniques
title_full A study of some electroactive, thin organic films prepared by plasma and electrochemical techniques
title_fullStr A study of some electroactive, thin organic films prepared by plasma and electrochemical techniques
title_full_unstemmed A study of some electroactive, thin organic films prepared by plasma and electrochemical techniques
title_sort study of some electroactive, thin organic films prepared by plasma and electrochemical techniques
publisher Durham University
publishDate 1986
url http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.372490
work_keys_str_mv AT eavesjeffreygraham astudyofsomeelectroactivethinorganicfilmspreparedbyplasmaandelectrochemicaltechniques
AT eavesjeffreygraham studyofsomeelectroactivethinorganicfilmspreparedbyplasmaandelectrochemicaltechniques
_version_ 1716741496606031872