Medical X-ray dose reduction including adaptive image processing

This thesis investigates possible methods for dose reduction for one of the main contributors to medical x-ray dose, that of fluoroscopic examinations. Background information is provided on the subjects of radiation interaction mechanisms, radiation dose measures, and the health risk from medical x-...

Full description

Bibliographic Details
Main Author: Podd, Frank J. W.
Published: University of Surrey 1997
Subjects:
Online Access:http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.363743
id ndltd-bl.uk-oai-ethos.bl.uk-363743
record_format oai_dc
spelling ndltd-bl.uk-oai-ethos.bl.uk-3637432018-04-04T03:26:55ZMedical X-ray dose reduction including adaptive image processingPodd, Frank J. W.1997This thesis investigates possible methods for dose reduction for one of the main contributors to medical x-ray dose, that of fluoroscopic examinations. Background information is provided on the subjects of radiation interaction mechanisms, radiation dose measures, and the health risk from medical x-rays. This illuminates a running theme of the thesis, namely the compromise between image quality and low patient dose. Possible dose reduction methods using both spatial and temporal image processing techniques are investigated. Edge detection is one of the most important sub-components of the spatial image processing system. The commonly used edge detectors are investigated from a theoretical viewpoint and their performances under Poisson noise conditions are compared using receiver operating characteristic analysis. A new metric is suggested for the quantitative comparison of the edge operators under high detection and low false alarm probability conditions. An adaptive pulse dropping control system is created in order to use the image processing sub-systems with low-dose examinations. This control system determines the best x-ray tube pulse-rate based on the amount of movement present in the image. A method of distributing the dose so that areas of high clinical importance have a higher image quality than less important regions is discussed. This method uses a wedge-shaped x-ray beam filter. The problem of varying pixel intensity due to the differing filter thickness is countered by rescaling the image. The various image processing techniques are combined to create a low-dose imaging system. This system achieves a dose reduction of an order of magnitude.571.45Radiobiology & radiation biologyUniversity of Surreyhttp://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.363743http://epubs.surrey.ac.uk/842724/Electronic Thesis or Dissertation
collection NDLTD
sources NDLTD
topic 571.45
Radiobiology & radiation biology
spellingShingle 571.45
Radiobiology & radiation biology
Podd, Frank J. W.
Medical X-ray dose reduction including adaptive image processing
description This thesis investigates possible methods for dose reduction for one of the main contributors to medical x-ray dose, that of fluoroscopic examinations. Background information is provided on the subjects of radiation interaction mechanisms, radiation dose measures, and the health risk from medical x-rays. This illuminates a running theme of the thesis, namely the compromise between image quality and low patient dose. Possible dose reduction methods using both spatial and temporal image processing techniques are investigated. Edge detection is one of the most important sub-components of the spatial image processing system. The commonly used edge detectors are investigated from a theoretical viewpoint and their performances under Poisson noise conditions are compared using receiver operating characteristic analysis. A new metric is suggested for the quantitative comparison of the edge operators under high detection and low false alarm probability conditions. An adaptive pulse dropping control system is created in order to use the image processing sub-systems with low-dose examinations. This control system determines the best x-ray tube pulse-rate based on the amount of movement present in the image. A method of distributing the dose so that areas of high clinical importance have a higher image quality than less important regions is discussed. This method uses a wedge-shaped x-ray beam filter. The problem of varying pixel intensity due to the differing filter thickness is countered by rescaling the image. The various image processing techniques are combined to create a low-dose imaging system. This system achieves a dose reduction of an order of magnitude.
author Podd, Frank J. W.
author_facet Podd, Frank J. W.
author_sort Podd, Frank J. W.
title Medical X-ray dose reduction including adaptive image processing
title_short Medical X-ray dose reduction including adaptive image processing
title_full Medical X-ray dose reduction including adaptive image processing
title_fullStr Medical X-ray dose reduction including adaptive image processing
title_full_unstemmed Medical X-ray dose reduction including adaptive image processing
title_sort medical x-ray dose reduction including adaptive image processing
publisher University of Surrey
publishDate 1997
url http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.363743
work_keys_str_mv AT poddfrankjw medicalxraydosereductionincludingadaptiveimageprocessing
_version_ 1718619211784257536