Summary: | Human agents have to deal with a considerable amount of information from their environment and are also continuously faced with the need to take actions. As that information is largely of an uncertain nature, human agents have to decide whether, or how much, to believe individual pieces of information. To enable a reasoning system to deal in general with the demands of a real environment, and with information from human sources in particular, requires tools for uncertainty management and belief formation. This thesis presents a model for the management of uncertain information from human sources. Dealing, more specifically, with information which has been pre-processed by a natural language processor and transformed into an event-based representation, the model assesses information, forms beliefs and resolves conflicts between them in order to maintain a consistent world model. The approach is built on the fundamental principle that the uncertainty of information from people can, in the majority of situations, successfully be assessed through source models which record factors concerning the source's abilities and trustworthiness. These models are adjusted to reflect changes in the behaviour of the source. A mechanism is presented together with the underlying principles to reproduce such a behaviour. A high-level design is also given to make the proposed model reconstructible, and the successful operation of the model is demonstrated on two detailed examples.
|