A matrix formulation of quantum stochastic calculus

We develop the theory of chaos spaces and chaos matrices. A chaos space is a Hilbert space with a fixed, countably-infinite, direct-sum decomposition. A chaos matrix between two chaos spaces is a doubly-infinite matrix of bounded operators which respects this decomposition. We study operators repres...

Full description

Bibliographic Details
Main Author: Belton, Alexander C. R.
Published: University of Oxford 1998
Subjects:
Online Access:http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.301800
id ndltd-bl.uk-oai-ethos.bl.uk-301800
record_format oai_dc
spelling ndltd-bl.uk-oai-ethos.bl.uk-3018002015-03-19T05:16:13ZA matrix formulation of quantum stochastic calculusBelton, Alexander C. R.1998We develop the theory of chaos spaces and chaos matrices. A chaos space is a Hilbert space with a fixed, countably-infinite, direct-sum decomposition. A chaos matrix between two chaos spaces is a doubly-infinite matrix of bounded operators which respects this decomposition. We study operators represented by such matrices, particularly with respect to self-adjointness. This theory is used to re-formulate the quantum stochastic calculus of Hudson and Parthasarathy. Integrals of chaos-matrix processes are defined using the Hitsuda-Skorokhod integral and Malliavin gradient,following Lindsay and Belavkin. A new way of defining adaptedness is developed and the consequent quantum product Ito formula is used to provide a genuine functional Ito formula for polynomials in a large class of unbounded processes, which include the Poisson process and Brownian motion. A new type of adaptedness, known as $\Omega$-adaptedness, is defined. We show that quantum stochastic integrals of $\Omega$-adapted processes are well-behaved; for instance, bounded processes have bounded integrals. We solve the appropriate modification of the evolution equation of Hudson and Parthasarathy: $U(t)=I+\int_{0}^{t}E(s)\mathrm{d}\Lambda(s)+F(s)\mathrm{d} A(s)+ G(s)U(s)\mathrm{d} A^{\dagger}(s)+H(s)U(s)\mathrm{d} s, $ where the coefficients are time-dependent, bounded, $\Omega$-adapted processes acting on the whole Fock space. We show that the usual conditions on the coefficients, viz. $(E,F,G,H)=(W-I,L,-WL^{*},iK+\mbox{$\frac{1}{2}$}LL^{*})$ where $W$ is unitary and $K$ self-adjoint, are necessary and sufficient conditions for the solution to be unitary. This is a very striking result when compared to the adapted case.530.1Quantum theory : Functional analysis : Probability theory and stochastic processesUniversity of Oxfordhttp://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.301800http://ora.ox.ac.uk/objects/uuid:a0603234-3b3b-4832-a741-77778008d75f : http://eprints.maths.ox.ac.uk/29/Electronic Thesis or Dissertation
collection NDLTD
sources NDLTD
topic 530.1
Quantum theory : Functional analysis : Probability theory and stochastic processes
spellingShingle 530.1
Quantum theory : Functional analysis : Probability theory and stochastic processes
Belton, Alexander C. R.
A matrix formulation of quantum stochastic calculus
description We develop the theory of chaos spaces and chaos matrices. A chaos space is a Hilbert space with a fixed, countably-infinite, direct-sum decomposition. A chaos matrix between two chaos spaces is a doubly-infinite matrix of bounded operators which respects this decomposition. We study operators represented by such matrices, particularly with respect to self-adjointness. This theory is used to re-formulate the quantum stochastic calculus of Hudson and Parthasarathy. Integrals of chaos-matrix processes are defined using the Hitsuda-Skorokhod integral and Malliavin gradient,following Lindsay and Belavkin. A new way of defining adaptedness is developed and the consequent quantum product Ito formula is used to provide a genuine functional Ito formula for polynomials in a large class of unbounded processes, which include the Poisson process and Brownian motion. A new type of adaptedness, known as $\Omega$-adaptedness, is defined. We show that quantum stochastic integrals of $\Omega$-adapted processes are well-behaved; for instance, bounded processes have bounded integrals. We solve the appropriate modification of the evolution equation of Hudson and Parthasarathy: $U(t)=I+\int_{0}^{t}E(s)\mathrm{d}\Lambda(s)+F(s)\mathrm{d} A(s)+ G(s)U(s)\mathrm{d} A^{\dagger}(s)+H(s)U(s)\mathrm{d} s, $ where the coefficients are time-dependent, bounded, $\Omega$-adapted processes acting on the whole Fock space. We show that the usual conditions on the coefficients, viz. $(E,F,G,H)=(W-I,L,-WL^{*},iK+\mbox{$\frac{1}{2}$}LL^{*})$ where $W$ is unitary and $K$ self-adjoint, are necessary and sufficient conditions for the solution to be unitary. This is a very striking result when compared to the adapted case.
author Belton, Alexander C. R.
author_facet Belton, Alexander C. R.
author_sort Belton, Alexander C. R.
title A matrix formulation of quantum stochastic calculus
title_short A matrix formulation of quantum stochastic calculus
title_full A matrix formulation of quantum stochastic calculus
title_fullStr A matrix formulation of quantum stochastic calculus
title_full_unstemmed A matrix formulation of quantum stochastic calculus
title_sort matrix formulation of quantum stochastic calculus
publisher University of Oxford
publishDate 1998
url http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.301800
work_keys_str_mv AT beltonalexandercr amatrixformulationofquantumstochasticcalculus
AT beltonalexandercr matrixformulationofquantumstochasticcalculus
_version_ 1716740567326523392