The stochastic elementary formula method and approximate travelling waves for semi-linear reaction diffusion equations

In this thesis we consider approximate travelling wave solutions for stochastic and generalised KPP equations and systems by using the stochastic elementary formula method of Elworthy and Truman. We begin with the semi-classical analysis for generalised KPP equations. With a so-called "late cau...

Full description

Bibliographic Details
Main Author: Zhao, Huaizhong
Published: University of Warwick 1994
Subjects:
510
Online Access:http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.296778
id ndltd-bl.uk-oai-ethos.bl.uk-296778
record_format oai_dc
spelling ndltd-bl.uk-oai-ethos.bl.uk-2967782015-03-19T03:53:36ZThe stochastic elementary formula method and approximate travelling waves for semi-linear reaction diffusion equationsZhao, Huaizhong1994In this thesis we consider approximate travelling wave solutions for stochastic and generalised KPP equations and systems by using the stochastic elementary formula method of Elworthy and Truman. We begin with the semi-classical analysis for generalised KPP equations. With a so-called "late caustic" assumption we prove that the global wave front is given by the Hamilton Jacobi function. We prove a Huygens principle on complete Riemannian manifolds without cut locus, with some bounds on their volume elements, in particular Cartan-Hadamard manifolds. Based on the semiclassical analysis we then consider the propagation of approximate travelling waves for stochastic generalised KPP equations. Three regimes of perturbation are considered: weak, mild, and strong. We show that weak perturbations have little effect on the wave like solutions of the unperturbed equations while strong perturbations essentially destroy the wave and force the solutions to decay rapidly. In the more difficult mild case we show the existence of a 'wave front', in front of which the solution is close to zero (of order exp(-c1μ-2) as μ~0 for c1 random) and behind which it has at least order exp(-c2μ-1) for some random c2 depending on the increment of the noise. For an alternative stochastic equation we classify the effect of the noise by the Lyapunov exponent of a corresponding stochastic ODE. Finally we study the asymptotic behaviour of reaction-diffusion systems with a small parameter by using the n-dimensional Feynman-Kac formula and Freidlin's large deviation theory. We obtain the travelling wave with nonlinear ergodic interactions and a special case with nonlinear reducible interactions.510QA MathematicsUniversity of Warwickhttp://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.296778http://wrap.warwick.ac.uk/4236/Electronic Thesis or Dissertation
collection NDLTD
sources NDLTD
topic 510
QA Mathematics
spellingShingle 510
QA Mathematics
Zhao, Huaizhong
The stochastic elementary formula method and approximate travelling waves for semi-linear reaction diffusion equations
description In this thesis we consider approximate travelling wave solutions for stochastic and generalised KPP equations and systems by using the stochastic elementary formula method of Elworthy and Truman. We begin with the semi-classical analysis for generalised KPP equations. With a so-called "late caustic" assumption we prove that the global wave front is given by the Hamilton Jacobi function. We prove a Huygens principle on complete Riemannian manifolds without cut locus, with some bounds on their volume elements, in particular Cartan-Hadamard manifolds. Based on the semiclassical analysis we then consider the propagation of approximate travelling waves for stochastic generalised KPP equations. Three regimes of perturbation are considered: weak, mild, and strong. We show that weak perturbations have little effect on the wave like solutions of the unperturbed equations while strong perturbations essentially destroy the wave and force the solutions to decay rapidly. In the more difficult mild case we show the existence of a 'wave front', in front of which the solution is close to zero (of order exp(-c1μ-2) as μ~0 for c1 random) and behind which it has at least order exp(-c2μ-1) for some random c2 depending on the increment of the noise. For an alternative stochastic equation we classify the effect of the noise by the Lyapunov exponent of a corresponding stochastic ODE. Finally we study the asymptotic behaviour of reaction-diffusion systems with a small parameter by using the n-dimensional Feynman-Kac formula and Freidlin's large deviation theory. We obtain the travelling wave with nonlinear ergodic interactions and a special case with nonlinear reducible interactions.
author Zhao, Huaizhong
author_facet Zhao, Huaizhong
author_sort Zhao, Huaizhong
title The stochastic elementary formula method and approximate travelling waves for semi-linear reaction diffusion equations
title_short The stochastic elementary formula method and approximate travelling waves for semi-linear reaction diffusion equations
title_full The stochastic elementary formula method and approximate travelling waves for semi-linear reaction diffusion equations
title_fullStr The stochastic elementary formula method and approximate travelling waves for semi-linear reaction diffusion equations
title_full_unstemmed The stochastic elementary formula method and approximate travelling waves for semi-linear reaction diffusion equations
title_sort stochastic elementary formula method and approximate travelling waves for semi-linear reaction diffusion equations
publisher University of Warwick
publishDate 1994
url http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.296778
work_keys_str_mv AT zhaohuaizhong thestochasticelementaryformulamethodandapproximatetravellingwavesforsemilinearreactiondiffusionequations
AT zhaohuaizhong stochasticelementaryformulamethodandapproximatetravellingwavesforsemilinearreactiondiffusionequations
_version_ 1716734938386006016