Membrane-directed Expression of BBA57 and Other Virulence Targets from Borrelia burgdorferi Reveals Structural Evidence of an Outer Membrane Oligomer in the Lyme Disease Pathogen

abstract: Borrelia burgdorferi (Bb), the causative agent of Lyme disease, is a unique pathogen, with a complex genome and unique immune evasion tactics. It lacks genes encoding proteins involved in nutrient synthesis and typical metabolic pathways, and therefore relies on the host for nutrients. The...

Full description

Bibliographic Details
Other Authors: Robertson, Karie (Author)
Format: Doctoral Thesis
Language:English
Published: 2020
Subjects:
Online Access:http://hdl.handle.net/2286/R.I.62923
id ndltd-asu.edu-item-62923
record_format oai_dc
spelling ndltd-asu.edu-item-629232021-09-23T05:00:38Z Membrane-directed Expression of BBA57 and Other Virulence Targets from Borrelia burgdorferi Reveals Structural Evidence of an Outer Membrane Oligomer in the Lyme Disease Pathogen abstract: Borrelia burgdorferi (Bb), the causative agent of Lyme disease, is a unique pathogen, with a complex genome and unique immune evasion tactics. It lacks genes encoding proteins involved in nutrient synthesis and typical metabolic pathways, and therefore relies on the host for nutrients. The Bb genome encodes both an unusually high number of predicted outer surface lipoproteins of unknown function but with multiple complex roles in pathogenesis, and an unusually low number of predicted outer membrane proteins, given the necessity of bringing in the required nutrients for pathogen survival. Cellular processing of bacterial membrane proteins is complex, and structures of proteins from Bb have all been solved without the N-terminal signal sequence that directs the protein to proper folding and placement in the membrane. This dissertation presents the first membrane-directed expression in E. coli of several Bb proteins involved in the pathogenesis of Lyme disease. For the first time, I present evidence that the predicted lipoprotein, BBA57, forms a large alpha-helical homo-multimeric complex in the OM, is soluble in several detergents, and purifiable. The purified BBA57 complex forms homogeneous, 10 nm-diameter particles, visible by negative stain electron microscopy. Two-dimensional class averages from negative stain images reveal the first low-resolution particle views, comprised of a ring of subunits with a plug on top, possibly forming a porin or channel. These results provide the first evidence to support our theories that some of the predicted lipoproteins in Bb form integral-complexes in the outer membrane, and require proper membrane integration to form functional proteins. Dissertation/Thesis Robertson, Karie (Author) Hansen, Debra T. (Advisor) Fromme, Petra (Advisor) Van Horn, Wade (Committee member) Chiu, Po-Lin (Committee member) Arizona State University (Publisher) Biochemistry BBA57 Borrelia burgdorferi lipoprotein Lyme disease membrane proteins proteins eng 211 pages Doctoral Dissertation Chemistry 2020 Doctoral Dissertation http://hdl.handle.net/2286/R.I.62923 http://rightsstatements.org/vocab/InC/1.0/ 2020
collection NDLTD
language English
format Doctoral Thesis
sources NDLTD
topic Biochemistry
BBA57
Borrelia burgdorferi
lipoprotein
Lyme disease
membrane proteins
proteins
spellingShingle Biochemistry
BBA57
Borrelia burgdorferi
lipoprotein
Lyme disease
membrane proteins
proteins
Membrane-directed Expression of BBA57 and Other Virulence Targets from Borrelia burgdorferi Reveals Structural Evidence of an Outer Membrane Oligomer in the Lyme Disease Pathogen
description abstract: Borrelia burgdorferi (Bb), the causative agent of Lyme disease, is a unique pathogen, with a complex genome and unique immune evasion tactics. It lacks genes encoding proteins involved in nutrient synthesis and typical metabolic pathways, and therefore relies on the host for nutrients. The Bb genome encodes both an unusually high number of predicted outer surface lipoproteins of unknown function but with multiple complex roles in pathogenesis, and an unusually low number of predicted outer membrane proteins, given the necessity of bringing in the required nutrients for pathogen survival. Cellular processing of bacterial membrane proteins is complex, and structures of proteins from Bb have all been solved without the N-terminal signal sequence that directs the protein to proper folding and placement in the membrane. This dissertation presents the first membrane-directed expression in E. coli of several Bb proteins involved in the pathogenesis of Lyme disease. For the first time, I present evidence that the predicted lipoprotein, BBA57, forms a large alpha-helical homo-multimeric complex in the OM, is soluble in several detergents, and purifiable. The purified BBA57 complex forms homogeneous, 10 nm-diameter particles, visible by negative stain electron microscopy. Two-dimensional class averages from negative stain images reveal the first low-resolution particle views, comprised of a ring of subunits with a plug on top, possibly forming a porin or channel. These results provide the first evidence to support our theories that some of the predicted lipoproteins in Bb form integral-complexes in the outer membrane, and require proper membrane integration to form functional proteins. === Dissertation/Thesis === Doctoral Dissertation Chemistry 2020
author2 Robertson, Karie (Author)
author_facet Robertson, Karie (Author)
title Membrane-directed Expression of BBA57 and Other Virulence Targets from Borrelia burgdorferi Reveals Structural Evidence of an Outer Membrane Oligomer in the Lyme Disease Pathogen
title_short Membrane-directed Expression of BBA57 and Other Virulence Targets from Borrelia burgdorferi Reveals Structural Evidence of an Outer Membrane Oligomer in the Lyme Disease Pathogen
title_full Membrane-directed Expression of BBA57 and Other Virulence Targets from Borrelia burgdorferi Reveals Structural Evidence of an Outer Membrane Oligomer in the Lyme Disease Pathogen
title_fullStr Membrane-directed Expression of BBA57 and Other Virulence Targets from Borrelia burgdorferi Reveals Structural Evidence of an Outer Membrane Oligomer in the Lyme Disease Pathogen
title_full_unstemmed Membrane-directed Expression of BBA57 and Other Virulence Targets from Borrelia burgdorferi Reveals Structural Evidence of an Outer Membrane Oligomer in the Lyme Disease Pathogen
title_sort membrane-directed expression of bba57 and other virulence targets from borrelia burgdorferi reveals structural evidence of an outer membrane oligomer in the lyme disease pathogen
publishDate 2020
url http://hdl.handle.net/2286/R.I.62923
_version_ 1719482984876212224