Self-Organization of Multi-Agent Systems Using Markov Chain Models

abstract: The problem of modeling and controlling the distribution of a multi-agent system has recently evolved into an interdisciplinary effort. When the agent population is very large, i.e., at least on the order of hundreds of agents, it is important that techniques for analyzing and controlling...

Full description

Bibliographic Details
Other Authors: Biswal, Shiba (Author)
Format: Doctoral Thesis
Language:English
Published: 2020
Subjects:
Online Access:http://hdl.handle.net/2286/R.I.57169
Description
Summary:abstract: The problem of modeling and controlling the distribution of a multi-agent system has recently evolved into an interdisciplinary effort. When the agent population is very large, i.e., at least on the order of hundreds of agents, it is important that techniques for analyzing and controlling the system scale well with the number of agents. One scalable approach to characterizing the behavior of a multi-agent system is possible when the agents' states evolve over time according to a Markov process. In this case, the density of agents over space and time is governed by a set of difference or differential equations known as a {\it mean-field model}, whose parameters determine the stochastic control policies of the individual agents. These models often have the advantage of being easier to analyze than the individual agent dynamics. Mean-field models have been used to describe the behavior of chemical reaction networks, biological collectives such as social insect colonies, and more recently, swarms of robots that, like natural swarms, consist of hundreds or thousands of agents that are individually limited in capability but can coordinate to achieve a particular collective goal. This dissertation presents a control-theoretic analysis of mean-field models for which the agent dynamics are governed by either a continuous-time Markov chain on an arbitrary state space, or a discrete-time Markov chain on a continuous state space. Three main problems are investigated. First, the problem of stabilization is addressed, that is, the design of transition probabilities/rates of the Markov process (the agent control parameters) that make a target distribution, satisfying certain conditions, invariant. Such a control approach could be used to achieve desired multi-agent distributions for spatial coverage and task allocation. However, the convergence of the multi-agent distribution to the designed equilibrium does not imply the convergence of the individual agents to fixed states. To prevent the agents from continuing to transition between states once the target distribution is reached, and thus potentially waste energy, the second problem addressed within this dissertation is the construction of feedback control laws that prevent agents from transitioning once the equilibrium distribution is reached. The third problem addressed is the computation of optimized transition probabilities/rates that maximize the speed at which the system converges to the target distribution. === Dissertation/Thesis === Doctoral Dissertation Mechanical Engineering 2020