Summary: | abstract: The three-dimensional flow contained in a rapidly rotating circular
split cylinder is studied numerically solving the Navier--Stokes
equations. The cylinder is completely filled with fluid
and is split at the midplane. Three different types of boundary
conditions were imposed, leading to a variety of instabilities and
complex flow dynamics.
The first configuration has a strong background rotation and a small
differential rotation between the two halves. The axisymmetric flow
was first studied identifying boundary layer instabilities which
produce inertial waves under some conditions. Limit cycle states and
quasiperiodic states were found, including some period doubling
bifurcations. Then, a three-dimensional study was conducted
identifying low and high azimuthal wavenumber rotating waves due to
G\"ortler and Tollmien–-Schlichting type instabilities. Over most of
the parameter space considered, quasiperiodic states were found where
both types of instabilities were present.
In the second configuration, both cylinder halves are in exact
counter-rotation, producing an O(2) symmetry in the system. The basic state flow dynamic
is dominated by the shear layer created
in the midplane. By changing the speed rotation and the aspect ratio
of the cylinder, the flow loses symmetries in a variety of ways
creating static waves, rotating waves, direction reversing waves and
slow-fast pulsing waves. The bifurcations, including infinite-period
bifurcations, were characterized and the flow dynamics was elucidated.
Additionally, preliminary experimental results for this case are
presented.
In the third set up, with oscillatory boundary conditions, inertial
wave beams were forced imposing a range of frequencies. These beams
emanate from the corner of the cylinder and from the split at the
midplane, leading to destructive/constructive interactions which
produce peaks in vorticity for some specific frequencies. These
frequencies are shown to be associated with the resonant Kelvin
modes. Furthermore, a study of the influence of imposing a phase
difference between the oscillations of the two halves of the cylinder
led to the interesting result that different Kelvin
modes can be excited depending on the phase difference. === Dissertation/Thesis === Doctoral Dissertation Applied Mathematics 2017
|