Design and Development of Rolling and Hopping Ball Robots for Low Gravity Environment

abstract: In-situ exploration of planetary bodies such as Mars or the Moon have provided geologists and planetary scientists a detailed understanding of how these bodies formed and evolved. In-situ exploration has aided in the quest for water and life-supporting chemicals. In-situ exploration of Ma...

Full description

Bibliographic Details
Other Authors: Raura, Laksh Deepak (Author)
Format: Dissertation
Language:English
Published: 2016
Subjects:
Online Access:http://hdl.handle.net/2286/R.I.38691
id ndltd-asu.edu-item-38691
record_format oai_dc
spelling ndltd-asu.edu-item-386912018-06-22T03:07:23Z Design and Development of Rolling and Hopping Ball Robots for Low Gravity Environment abstract: In-situ exploration of planetary bodies such as Mars or the Moon have provided geologists and planetary scientists a detailed understanding of how these bodies formed and evolved. In-situ exploration has aided in the quest for water and life-supporting chemicals. In-situ exploration of Mars carried out by large SUV-sized rovers that travel long distance, carry sophisticated onboard laboratories to perform soil analysis and sample collection. But their large size and mobility method prevents them from accessing or exploring extreme environments, particularly caves, canyons, cliffs and craters. This work presents sub- 2 kg ball robots that can roll and hop in low gravity environments. These robots are low-cost enabling for one or more to be deployed in the field. These small robots can be deployed from a larger rover or lander and complement their capabilities by performing scouting and identifying potential targets of interest. Their small size and ball shape allow them to tumble freely, preventing them from getting stuck. Hopping enables the robot to overcome obstacles larger than the size of the robot. The proposed ball-robot design consists of a spherical core with two hemispherical shells with grouser which act as wheels for small movements. These robots have two cameras for stereovision which can be used for localization. Inertial Measurement Unit (IMU) and wheel encoder are used for dead reckoning. Communication is performed using Zigbee radio. This enables communication between a robot and a lander/rover or for inter-robot communication. The robots have been designed to have a payload with a 300 gram capacity. These may include chemical analysis sensors, spectrometers and other small sensors. The performance of the robot has been evaluated in a laboratory environment using Low-gravity Offset and Motion Assistance Simulation System (LOMASS). An evaluation was done to understand the effect of grouser height and grouser separation angle on the performance of the robot in different terrains. The experiments show with higher grouser height and optimal separation angle the power requirement increases but an increase in average robot speed and traction is also observed. The robot was observed to perform hops of approximately 20 cm in simulated lunar condition. Based on theoretical calculations, the robot would be able to perform 208 hops with single charge and will operate for 35 minutes. The study will be extended to operate multiple robots in a network to perform exploration. Their small size and cost makes it possible to deploy dozens in a region of interest. Multiple ball robots can cooperatively perform unique in-situ science measurements and analyze a larger surface area than a single robot alone on a planet surface. Dissertation/Thesis Raura, Laksh Deepak (Author) Thangavelautham, Jekanthan (Advisor) Berman, Spring (Advisor) Lee, Hyunglae (Committee member) Asphaug, Erik (Committee member) Arizona State University (Publisher) Robotics Mechanical engineering Hopping Low Gravity Environment Micro Rover Planetary Exploration Rolling Spherical robot eng 95 pages Masters Thesis Mechanical Engineering 2016 Masters Thesis http://hdl.handle.net/2286/R.I.38691 http://rightsstatements.org/vocab/InC/1.0/ All Rights Reserved 2016
collection NDLTD
language English
format Dissertation
sources NDLTD
topic Robotics
Mechanical engineering
Hopping
Low Gravity Environment
Micro Rover
Planetary Exploration
Rolling
Spherical robot
spellingShingle Robotics
Mechanical engineering
Hopping
Low Gravity Environment
Micro Rover
Planetary Exploration
Rolling
Spherical robot
Design and Development of Rolling and Hopping Ball Robots for Low Gravity Environment
description abstract: In-situ exploration of planetary bodies such as Mars or the Moon have provided geologists and planetary scientists a detailed understanding of how these bodies formed and evolved. In-situ exploration has aided in the quest for water and life-supporting chemicals. In-situ exploration of Mars carried out by large SUV-sized rovers that travel long distance, carry sophisticated onboard laboratories to perform soil analysis and sample collection. But their large size and mobility method prevents them from accessing or exploring extreme environments, particularly caves, canyons, cliffs and craters. This work presents sub- 2 kg ball robots that can roll and hop in low gravity environments. These robots are low-cost enabling for one or more to be deployed in the field. These small robots can be deployed from a larger rover or lander and complement their capabilities by performing scouting and identifying potential targets of interest. Their small size and ball shape allow them to tumble freely, preventing them from getting stuck. Hopping enables the robot to overcome obstacles larger than the size of the robot. The proposed ball-robot design consists of a spherical core with two hemispherical shells with grouser which act as wheels for small movements. These robots have two cameras for stereovision which can be used for localization. Inertial Measurement Unit (IMU) and wheel encoder are used for dead reckoning. Communication is performed using Zigbee radio. This enables communication between a robot and a lander/rover or for inter-robot communication. The robots have been designed to have a payload with a 300 gram capacity. These may include chemical analysis sensors, spectrometers and other small sensors. The performance of the robot has been evaluated in a laboratory environment using Low-gravity Offset and Motion Assistance Simulation System (LOMASS). An evaluation was done to understand the effect of grouser height and grouser separation angle on the performance of the robot in different terrains. The experiments show with higher grouser height and optimal separation angle the power requirement increases but an increase in average robot speed and traction is also observed. The robot was observed to perform hops of approximately 20 cm in simulated lunar condition. Based on theoretical calculations, the robot would be able to perform 208 hops with single charge and will operate for 35 minutes. The study will be extended to operate multiple robots in a network to perform exploration. Their small size and cost makes it possible to deploy dozens in a region of interest. Multiple ball robots can cooperatively perform unique in-situ science measurements and analyze a larger surface area than a single robot alone on a planet surface. === Dissertation/Thesis === Masters Thesis Mechanical Engineering 2016
author2 Raura, Laksh Deepak (Author)
author_facet Raura, Laksh Deepak (Author)
title Design and Development of Rolling and Hopping Ball Robots for Low Gravity Environment
title_short Design and Development of Rolling and Hopping Ball Robots for Low Gravity Environment
title_full Design and Development of Rolling and Hopping Ball Robots for Low Gravity Environment
title_fullStr Design and Development of Rolling and Hopping Ball Robots for Low Gravity Environment
title_full_unstemmed Design and Development of Rolling and Hopping Ball Robots for Low Gravity Environment
title_sort design and development of rolling and hopping ball robots for low gravity environment
publishDate 2016
url http://hdl.handle.net/2286/R.I.38691
_version_ 1718701132680790016