Feasibility of Energy Harvesting Using a Piezoelectric Tire
abstract: While the piezoelectric effect has been around for some time, it has only recently caught interest as a potential sustainable energy harvesting device. Piezoelectric energy harvesting has been developed for shoes and panels, but has yet to be integrated into a marketable bicycle tire. For...
Other Authors: | |
---|---|
Format: | Dissertation |
Language: | English |
Published: |
2012
|
Subjects: | |
Online Access: | http://hdl.handle.net/2286/R.I.15992 |
id |
ndltd-asu.edu-item-15992 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-asu.edu-item-159922018-06-22T03:03:34Z Feasibility of Energy Harvesting Using a Piezoelectric Tire abstract: While the piezoelectric effect has been around for some time, it has only recently caught interest as a potential sustainable energy harvesting device. Piezoelectric energy harvesting has been developed for shoes and panels, but has yet to be integrated into a marketable bicycle tire. For this thesis, the development and feasibility of a piezoelectric tire was done. This includes the development of a circuit that incorporates piezoceramic elements, energy harvesting circuitry, and an energy storage device. A single phase circuit was designed using an ac-dc diode rectifier. An electrolytic capacitor was used as the energy storage device. A financial feasibility was also done to determine targets for manufacturing cost and sales price. These models take into account market trends for high performance tires, economies of scale, and the possibility of government subsidies. This research will help understand the potential for the marketability of a piezoelectric energy harvesting tire that can create electricity for remote use. This study found that there are many obstacles that must be addressed before a piezoelectric tire can be marketed to the general public. The power output of this device is miniscule compared to an alkaline battery. In order for this device to approach the power output of an alkaline battery the weight of the device would also become an issue. Additionally this device is very costly compared to the average bicycle tire. Lastly, this device is extreme fragile and easily broken. In order for this device to become marketable the issues of power output, cost, weight, and durability must all be successfully overcome. Dissertation/Thesis Malotte, Christopher Gilbert (Author) Madakannan, Arunachalanadar (Advisor) Srinivasan, Devarajan (Committee member) Rogers, Bradley (Committee member) Arizona State University (Publisher) Alternative energy Energy Engineering Alternative Energy Energy Harvesting Piezoelectric Technology Tire eng 39 pages M.S.Tech Educational Technology 2012 Masters Thesis http://hdl.handle.net/2286/R.I.15992 http://rightsstatements.org/vocab/InC/1.0/ All Rights Reserved 2012 |
collection |
NDLTD |
language |
English |
format |
Dissertation |
sources |
NDLTD |
topic |
Alternative energy Energy Engineering Alternative Energy Energy Harvesting Piezoelectric Technology Tire |
spellingShingle |
Alternative energy Energy Engineering Alternative Energy Energy Harvesting Piezoelectric Technology Tire Feasibility of Energy Harvesting Using a Piezoelectric Tire |
description |
abstract: While the piezoelectric effect has been around for some time, it has only recently caught interest as a potential sustainable energy harvesting device. Piezoelectric energy harvesting has been developed for shoes and panels, but has yet to be integrated into a marketable bicycle tire. For this thesis, the development and feasibility of a piezoelectric tire was done. This includes the development of a circuit that incorporates piezoceramic elements, energy harvesting circuitry, and an energy storage device. A single phase circuit was designed using an ac-dc diode rectifier. An electrolytic capacitor was used as the energy storage device. A financial feasibility was also done to determine targets for manufacturing cost and sales price. These models take into account market trends for high performance tires, economies of scale, and the possibility of government subsidies. This research will help understand the potential for the marketability of a piezoelectric energy harvesting tire that can create electricity for remote use. This study found that there are many obstacles that must be addressed before a piezoelectric tire can be marketed to the general public. The power output of this device is miniscule compared to an alkaline battery. In order for this device to approach the power output of an alkaline battery the weight of the device would also become an issue. Additionally this device is very costly compared to the average bicycle tire. Lastly, this device is extreme fragile and easily broken. In order for this device to become marketable the issues of power output, cost, weight, and durability must all be successfully overcome. === Dissertation/Thesis === M.S.Tech Educational Technology 2012 |
author2 |
Malotte, Christopher Gilbert (Author) |
author_facet |
Malotte, Christopher Gilbert (Author) |
title |
Feasibility of Energy Harvesting Using a Piezoelectric Tire |
title_short |
Feasibility of Energy Harvesting Using a Piezoelectric Tire |
title_full |
Feasibility of Energy Harvesting Using a Piezoelectric Tire |
title_fullStr |
Feasibility of Energy Harvesting Using a Piezoelectric Tire |
title_full_unstemmed |
Feasibility of Energy Harvesting Using a Piezoelectric Tire |
title_sort |
feasibility of energy harvesting using a piezoelectric tire |
publishDate |
2012 |
url |
http://hdl.handle.net/2286/R.I.15992 |
_version_ |
1718699932656861184 |