Material Properties of MBE Grown ZnTe, GaSb and Their Heterostructures for Optoelectronic Device Applications
abstract: Recently a new materials platform consisting of semiconductors grown on GaSb and InAs substrates with lattice constants close to 6.1 A was proposed by our group for various electronic and optoelectronic applications. This materials platform consists of both II-VI (MgZnCdHg)(SeTe) and III-V...
Other Authors: | |
---|---|
Format: | Doctoral Thesis |
Language: | English |
Published: |
2012
|
Subjects: | |
Online Access: | http://hdl.handle.net/2286/R.I.15804 |
id |
ndltd-asu.edu-item-15804 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-asu.edu-item-158042018-06-22T03:03:21Z Material Properties of MBE Grown ZnTe, GaSb and Their Heterostructures for Optoelectronic Device Applications abstract: Recently a new materials platform consisting of semiconductors grown on GaSb and InAs substrates with lattice constants close to 6.1 A was proposed by our group for various electronic and optoelectronic applications. This materials platform consists of both II-VI (MgZnCdHg)(SeTe) and III-V (InGaAl)(AsSb) compound semiconductors, which have direct bandgaps spanning the entire energy spectrum from far-IR (~0 eV) up to UV (~3.4 eV). The broad range of bandgaps and material properties make it very attractive for a wide range of applications in optoelectronics, such as solar cells, laser diodes, light emitting diodes, and photodetectors. Moreover, this novel materials system potentially offers unlimited degrees of freedom for integration of electronic and optoelectronic devices onto a single substrate while keeping the best possible materials quality with very low densities of misfit dislocations. This capability is not achievable with any other known lattice-matched semiconductors on any available substrate. In the 6.1-A materials system, the semiconductors ZnTe and GaSb are almost perfectly lattice-matched with a lattice mismatch of only 0.13%. Correspondingly, it is expected that high quality ZnTe/GaSb and GaSb/ZnTe heterostructures can be achieved with very few dislocations generated during growth. To fulfill the task, their MBE growth and material properties are carefully investigated. High quality ZnTe layers grown on various III-V substrates and GaSb grown on ZnTe are successfully achieved using MBE. It is also noticed that ZnTe and GaSb have a type-I band-edge alignment with large band offsets (delta_Ec=0.934 eV, delta_Ev=0.6 eV), which provides strong confinement for both electrons and holes. Furthermore, a large difference in refractive index is found between ZnTe and GaSb (2.7 and 3.9, respectively, at 0.7 eV), leading to excellent optical confinement of the guided optical modes in planar semiconductor lasers or distributed Bragg reflectors (DBR) for vertical-cavity surface-emitting lasers. Therefore, GaSb/ZnTe double-heterostructure and ZnTe/GaSb DBR structure are suitable for use in light emitting devices. In this thesis work, experimental demonstration of these structures with excellent structural and optical properties is reported. During the exploration on the properties of various ZnTe heterostructures, it is found that residual tensile strains exist in the thick ZnTe epilayers when they are grown on GaAs, InP, InAs and GaSb substrates. The presence of tensile strains is due to the difference in thermal expansion coefficients between the epilayers and the substrates. The defect densities in these ZnTe layers become lower as the ZnTe layer thickness increases. Growth of high quality GaSb on ZnTe can be achieved using a temperature ramp during growth. The influence of temperature ramps with different ramping rates in the optical properties of GaSb layer is studied, and the samples grown with a temperature ramp from 360 to 470 C at a rate of 33 C/min show the narrowest bound exciton emission peak with a full width at half maximum of 15 meV. ZnTe/GaSb DBR structures show excellent reflectivity properties in the mid-infrared range. A peak reflectance of 99% with a wide stopband of 480 nm centered at 2.5 um is measured from a ZnTe/GaSb DBR sample of only 7 quarter-wavelength pairs. Dissertation/Thesis Fan, Jin (Author) Zhang, Yong-Hang (Advisor) Smith, David (Committee member) Yu, Hongbin (Committee member) Menendez, Jose (Committee member) Johnson, Shane (Committee member) Arizona State University (Publisher) Physics Materials Science Engineering GaSb Heterostructure II-VI/III-V semiconductor integration MBE Optoelectronics ZnTe eng 147 pages Ph.D. Physics 2012 Doctoral Dissertation http://hdl.handle.net/2286/R.I.15804 http://rightsstatements.org/vocab/InC/1.0/ All Rights Reserved 2012 |
collection |
NDLTD |
language |
English |
format |
Doctoral Thesis |
sources |
NDLTD |
topic |
Physics Materials Science Engineering GaSb Heterostructure II-VI/III-V semiconductor integration MBE Optoelectronics ZnTe |
spellingShingle |
Physics Materials Science Engineering GaSb Heterostructure II-VI/III-V semiconductor integration MBE Optoelectronics ZnTe Material Properties of MBE Grown ZnTe, GaSb and Their Heterostructures for Optoelectronic Device Applications |
description |
abstract: Recently a new materials platform consisting of semiconductors grown on GaSb and InAs substrates with lattice constants close to 6.1 A was proposed by our group for various electronic and optoelectronic applications. This materials platform consists of both II-VI (MgZnCdHg)(SeTe) and III-V (InGaAl)(AsSb) compound semiconductors, which have direct bandgaps spanning the entire energy spectrum from far-IR (~0 eV) up to UV (~3.4 eV). The broad range of bandgaps and material properties make it very attractive for a wide range of applications in optoelectronics, such as solar cells, laser diodes, light emitting diodes, and photodetectors. Moreover, this novel materials system potentially offers unlimited degrees of freedom for integration of electronic and optoelectronic devices onto a single substrate while keeping the best possible materials quality with very low densities of misfit dislocations. This capability is not achievable with any other known lattice-matched semiconductors on any available substrate. In the 6.1-A materials system, the semiconductors ZnTe and GaSb are almost perfectly lattice-matched with a lattice mismatch of only 0.13%. Correspondingly, it is expected that high quality ZnTe/GaSb and GaSb/ZnTe heterostructures can be achieved with very few dislocations generated during growth. To fulfill the task, their MBE growth and material properties are carefully investigated. High quality ZnTe layers grown on various III-V substrates and GaSb grown on ZnTe are successfully achieved using MBE. It is also noticed that ZnTe and GaSb have a type-I band-edge alignment with large band offsets (delta_Ec=0.934 eV, delta_Ev=0.6 eV), which provides strong confinement for both electrons and holes. Furthermore, a large difference in refractive index is found between ZnTe and GaSb (2.7 and 3.9, respectively, at 0.7 eV), leading to excellent optical confinement of the guided optical modes in planar semiconductor lasers or distributed Bragg reflectors (DBR) for vertical-cavity surface-emitting lasers. Therefore, GaSb/ZnTe double-heterostructure and ZnTe/GaSb DBR structure are suitable for use in light emitting devices. In this thesis work, experimental demonstration of these structures with excellent structural and optical properties is reported. During the exploration on the properties of various ZnTe heterostructures, it is found that residual tensile strains exist in the thick ZnTe epilayers when they are grown on GaAs, InP, InAs and GaSb substrates. The presence of tensile strains is due to the difference in thermal expansion coefficients between the epilayers and the substrates. The defect densities in these ZnTe layers become lower as the ZnTe layer thickness increases. Growth of high quality GaSb on ZnTe can be achieved using a temperature ramp during growth. The influence of temperature ramps with different ramping rates in the optical properties of GaSb layer is studied, and the samples grown with a temperature ramp from 360 to 470 C at a rate of 33 C/min show the narrowest bound exciton emission peak with a full width at half maximum of 15 meV. ZnTe/GaSb DBR structures show excellent reflectivity properties in the mid-infrared range. A peak reflectance of 99% with a wide stopband of 480 nm centered at 2.5 um is measured from a ZnTe/GaSb DBR sample of only 7 quarter-wavelength pairs. === Dissertation/Thesis === Ph.D. Physics 2012 |
author2 |
Fan, Jin (Author) |
author_facet |
Fan, Jin (Author) |
title |
Material Properties of MBE Grown ZnTe, GaSb and Their Heterostructures for Optoelectronic Device Applications |
title_short |
Material Properties of MBE Grown ZnTe, GaSb and Their Heterostructures for Optoelectronic Device Applications |
title_full |
Material Properties of MBE Grown ZnTe, GaSb and Their Heterostructures for Optoelectronic Device Applications |
title_fullStr |
Material Properties of MBE Grown ZnTe, GaSb and Their Heterostructures for Optoelectronic Device Applications |
title_full_unstemmed |
Material Properties of MBE Grown ZnTe, GaSb and Their Heterostructures for Optoelectronic Device Applications |
title_sort |
material properties of mbe grown znte, gasb and their heterostructures for optoelectronic device applications |
publishDate |
2012 |
url |
http://hdl.handle.net/2286/R.I.15804 |
_version_ |
1718699865751420928 |