Spectral analysis of four surprisingly similar hot hydrogen-rich subdwarf O stars

Context. Post-extreme horizontal branch stars (post-EHB) are helium-shell burning objects evolving away from the EHB and contracting directly towards the white dwarf regime. While the stars forming the EHB have been extensively studied in the past, their hotter and more evolved progeny are not so we...

Full description

Bibliographic Details
Main Authors: Latour, M., Chayer, P., Green, E. M., Irrgang, A., Fontaine, G.
Other Authors: Univ Arizona, Steward Observ
Language:en
Published: EDP SCIENCES S A 2018
Subjects:
Online Access:http://hdl.handle.net/10150/626530
http://arizona.openrepository.com/arizona/handle/10150/626530
id ndltd-arizona.edu-oai-arizona.openrepository.com-10150-626530
record_format oai_dc
spelling ndltd-arizona.edu-oai-arizona.openrepository.com-10150-6265302018-02-14T03:00:32Z Spectral analysis of four surprisingly similar hot hydrogen-rich subdwarf O stars Latour, M. Chayer, P. Green, E. M. Irrgang, A. Fontaine, G. Univ Arizona, Steward Observ stars: atmospheres stars: abundances subdwarfs stars: fundamental parameters Context. Post-extreme horizontal branch stars (post-EHB) are helium-shell burning objects evolving away from the EHB and contracting directly towards the white dwarf regime. While the stars forming the EHB have been extensively studied in the past, their hotter and more evolved progeny are not so well characterized. Aims. We perform a comprehensive spectroscopic analysis of four such bright sdO stars, namely Feige 34, Feige 67, AGK+81 degrees 266, and LS II + 18 degrees 9, among which the first three are used as standard stars for flux calibration. Our goal is to determine their atmospheric parameters, chemical properties, and evolutionary status to better understand this class of stars that are en route to become white dwarfs. Methods. We used non-local thermodynamic equilibrium model atmospheres in combination with high quality optical and UV spectra. Photometric data were also used to compute the spectroscopic distances of our stars and to characterize the companion responsible for the infrared excess of Feige 34. Results. The four bright sdO stars have very similar atmospheric parameters with T-eff between 60 000 and 63 000 K and log g (cm s(-2)) in the range 5.9 to 6.1. This places these objects right on the theoretical post-EHB evolutionary tracks. The UV spectra are dominated by strong iron and nickel lines and suggest abundances that are enriched with respect to those of the Sun by factors of 25 and 60. On the other hand, the lighter elements, C, N, O, Mg, Si, P, and S are depleted. The stars have very similar abundances, although AGK + 81 degrees 266 shows differences in its light element abundances. For instance, the helium abundance of this object is 10 times lower than that observed in the other three stars. All our stars show UV spectral lines that require additional line broadening that is consistent with a rotational velocity of about 25 km s(-1). The infrared excess of Feige 34 is well reproduced by a M0 main-sequence companion and the surface area ratio of the two stars suggests that the system is a physical binary. However, the lack of radial velocity variations points towards a low inclination and/or long orbital period. Spectroscopic and HIPPARCOS distances are in good agreement for our three brightest stars. Conclusions. We performed a spectroscopic analysis of four hot sdO stars that are very similar in terms of atmospheric parameters and chemical compositions. The rotation velocities of our stars are significantly higher than what is observed in their immediate progenitors on the EHB, suggesting that angular momentum may be conserved as the stars evolve away from the EHB. 2018-01-19 Article Spectral analysis of four surprisingly similar hot hydrogen-rich subdwarf O stars 2018, 609:A89 Astronomy & Astrophysics 0004-6361 1432-0746 10.1051/0004-6361/201731496 http://hdl.handle.net/10150/626530 http://arizona.openrepository.com/arizona/handle/10150/626530 Astronomy & Astrophysics en https://www.aanda.org/10.1051/0004-6361/201731496 © ESO, 2018 EDP SCIENCES S A
collection NDLTD
language en
sources NDLTD
topic stars: atmospheres
stars: abundances
subdwarfs
stars: fundamental parameters
spellingShingle stars: atmospheres
stars: abundances
subdwarfs
stars: fundamental parameters
Latour, M.
Chayer, P.
Green, E. M.
Irrgang, A.
Fontaine, G.
Spectral analysis of four surprisingly similar hot hydrogen-rich subdwarf O stars
description Context. Post-extreme horizontal branch stars (post-EHB) are helium-shell burning objects evolving away from the EHB and contracting directly towards the white dwarf regime. While the stars forming the EHB have been extensively studied in the past, their hotter and more evolved progeny are not so well characterized. Aims. We perform a comprehensive spectroscopic analysis of four such bright sdO stars, namely Feige 34, Feige 67, AGK+81 degrees 266, and LS II + 18 degrees 9, among which the first three are used as standard stars for flux calibration. Our goal is to determine their atmospheric parameters, chemical properties, and evolutionary status to better understand this class of stars that are en route to become white dwarfs. Methods. We used non-local thermodynamic equilibrium model atmospheres in combination with high quality optical and UV spectra. Photometric data were also used to compute the spectroscopic distances of our stars and to characterize the companion responsible for the infrared excess of Feige 34. Results. The four bright sdO stars have very similar atmospheric parameters with T-eff between 60 000 and 63 000 K and log g (cm s(-2)) in the range 5.9 to 6.1. This places these objects right on the theoretical post-EHB evolutionary tracks. The UV spectra are dominated by strong iron and nickel lines and suggest abundances that are enriched with respect to those of the Sun by factors of 25 and 60. On the other hand, the lighter elements, C, N, O, Mg, Si, P, and S are depleted. The stars have very similar abundances, although AGK + 81 degrees 266 shows differences in its light element abundances. For instance, the helium abundance of this object is 10 times lower than that observed in the other three stars. All our stars show UV spectral lines that require additional line broadening that is consistent with a rotational velocity of about 25 km s(-1). The infrared excess of Feige 34 is well reproduced by a M0 main-sequence companion and the surface area ratio of the two stars suggests that the system is a physical binary. However, the lack of radial velocity variations points towards a low inclination and/or long orbital period. Spectroscopic and HIPPARCOS distances are in good agreement for our three brightest stars. Conclusions. We performed a spectroscopic analysis of four hot sdO stars that are very similar in terms of atmospheric parameters and chemical compositions. The rotation velocities of our stars are significantly higher than what is observed in their immediate progenitors on the EHB, suggesting that angular momentum may be conserved as the stars evolve away from the EHB.
author2 Univ Arizona, Steward Observ
author_facet Univ Arizona, Steward Observ
Latour, M.
Chayer, P.
Green, E. M.
Irrgang, A.
Fontaine, G.
author Latour, M.
Chayer, P.
Green, E. M.
Irrgang, A.
Fontaine, G.
author_sort Latour, M.
title Spectral analysis of four surprisingly similar hot hydrogen-rich subdwarf O stars
title_short Spectral analysis of four surprisingly similar hot hydrogen-rich subdwarf O stars
title_full Spectral analysis of four surprisingly similar hot hydrogen-rich subdwarf O stars
title_fullStr Spectral analysis of four surprisingly similar hot hydrogen-rich subdwarf O stars
title_full_unstemmed Spectral analysis of four surprisingly similar hot hydrogen-rich subdwarf O stars
title_sort spectral analysis of four surprisingly similar hot hydrogen-rich subdwarf o stars
publisher EDP SCIENCES S A
publishDate 2018
url http://hdl.handle.net/10150/626530
http://arizona.openrepository.com/arizona/handle/10150/626530
work_keys_str_mv AT latourm spectralanalysisoffoursurprisinglysimilarhothydrogenrichsubdwarfostars
AT chayerp spectralanalysisoffoursurprisinglysimilarhothydrogenrichsubdwarfostars
AT greenem spectralanalysisoffoursurprisinglysimilarhothydrogenrichsubdwarfostars
AT irrganga spectralanalysisoffoursurprisinglysimilarhothydrogenrichsubdwarfostars
AT fontaineg spectralanalysisoffoursurprisinglysimilarhothydrogenrichsubdwarfostars
_version_ 1718614404152426496