Hidden Higgses and Dark Matter at Current and Future Colliders

Despite its indisputable successes, the Standard Model of particle physics (SM) is widely considered to be an effective low-energy approximation to an underlying theory that describes physics at higher energy scales. While there are many candidates for such a theory, nearly all of them predict the e...

Full description

Bibliographic Details
Main Author: Pyarelal, Adarsh
Other Authors: Su, Shufang
Language:en_US
Published: The University of Arizona. 2017
Subjects:
Online Access:http://hdl.handle.net/10150/624536
http://arizona.openrepository.com/arizona/handle/10150/624536
id ndltd-arizona.edu-oai-arizona.openrepository.com-10150-624536
record_format oai_dc
spelling ndltd-arizona.edu-oai-arizona.openrepository.com-10150-6245362017-07-01T03:00:45Z Hidden Higgses and Dark Matter at Current and Future Colliders Pyarelal, Adarsh Pyarelal, Adarsh Su, Shufang Su, Shufang Toussaint, William D. Johns, Kenneth A. Fleming, Sean P. Wang, Weigang Collider Phenomenology Machine Learning Supersymmetry Two-Higgs Doublet Models Despite its indisputable successes, the Standard Model of particle physics (SM) is widely considered to be an effective low-energy approximation to an underlying theory that describes physics at higher energy scales. While there are many candidates for such a theory, nearly all of them predict the existence of additional particles beyond those of the Standard Model. In this work, we present three analyses aimed at discovering new particles at current and future particle colliders. The first two analyses are designed to probe extended scalar sectors, which often arise in theories beyond the Standard Model (BSM). The structure of these extended scalar sectors can be described by a physically well-motivated class of models, known collectively as Two- Higgs Doublet Models (2HDMs). The scalar mass spectrum of 2HDMs is comprised of two CP-even states h and H, a CP-odd state A, and a pair of charged states H± . Traditional searches for these states at particle colliders focus on finding them via their decays to SM particles. However, there are compelling scenarios in which these heavy scalars decay through exotic modes to non-SM final states. In certain regions of parameter space, these exotic modes can even dominate the conven- tional decay modes to SM final states, and thus provide a complementary avenue for discovering new Higgs bosons. The first analysis presented aims to discover charged Higgs bosons H± via top decay at the LHC. We find that the exotic decay modes outperform the conventional decay modes for regions of parameter space with low values of the 2HDM parameter tan β. The second analysis aims to systematically cover all the exotic decay scenarios that are consistent with theoretical and experimental con- straints, at both the 14 TeV LHC and a future 100 TeV hadron collider. We find that the preliminary results are promising - we are able to ex- clude a large swathe of 2HDM parameter space, up to scalar masses of 3.5 TeV, for a wide range of values of tan β, at a 100 TeV collider. In addition to these two analyses, we also present a third, aimed at discovering pair produced higgsinos that decay to binos at a 100 TeV collider. Higgsinos and binos are new fermion states that arise in the Minimal Supersymmetric Standard Model (MSSM). This heavily- studied model is the minimal phenomenologically viable incorporation of supersymmetry - a symmetry that connects fermions and bosons - into the Standard Model. In the scenario we consider, the bino is the lightest supersymmetric partner, which makes it a good candidate for dark matter. Using razor variables and boosted decision trees, we are able to exclude Higgsinos up to 1.8 TeV for binos up to 1.3 TeV. 2017 text Electronic Dissertation http://hdl.handle.net/10150/624536 http://arizona.openrepository.com/arizona/handle/10150/624536 en_US Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. The University of Arizona.
collection NDLTD
language en_US
sources NDLTD
topic Collider Phenomenology
Machine Learning
Supersymmetry
Two-Higgs Doublet Models
spellingShingle Collider Phenomenology
Machine Learning
Supersymmetry
Two-Higgs Doublet Models
Pyarelal, Adarsh
Pyarelal, Adarsh
Hidden Higgses and Dark Matter at Current and Future Colliders
description Despite its indisputable successes, the Standard Model of particle physics (SM) is widely considered to be an effective low-energy approximation to an underlying theory that describes physics at higher energy scales. While there are many candidates for such a theory, nearly all of them predict the existence of additional particles beyond those of the Standard Model. In this work, we present three analyses aimed at discovering new particles at current and future particle colliders. The first two analyses are designed to probe extended scalar sectors, which often arise in theories beyond the Standard Model (BSM). The structure of these extended scalar sectors can be described by a physically well-motivated class of models, known collectively as Two- Higgs Doublet Models (2HDMs). The scalar mass spectrum of 2HDMs is comprised of two CP-even states h and H, a CP-odd state A, and a pair of charged states H± . Traditional searches for these states at particle colliders focus on finding them via their decays to SM particles. However, there are compelling scenarios in which these heavy scalars decay through exotic modes to non-SM final states. In certain regions of parameter space, these exotic modes can even dominate the conven- tional decay modes to SM final states, and thus provide a complementary avenue for discovering new Higgs bosons. The first analysis presented aims to discover charged Higgs bosons H± via top decay at the LHC. We find that the exotic decay modes outperform the conventional decay modes for regions of parameter space with low values of the 2HDM parameter tan β. The second analysis aims to systematically cover all the exotic decay scenarios that are consistent with theoretical and experimental con- straints, at both the 14 TeV LHC and a future 100 TeV hadron collider. We find that the preliminary results are promising - we are able to ex- clude a large swathe of 2HDM parameter space, up to scalar masses of 3.5 TeV, for a wide range of values of tan β, at a 100 TeV collider. In addition to these two analyses, we also present a third, aimed at discovering pair produced higgsinos that decay to binos at a 100 TeV collider. Higgsinos and binos are new fermion states that arise in the Minimal Supersymmetric Standard Model (MSSM). This heavily- studied model is the minimal phenomenologically viable incorporation of supersymmetry - a symmetry that connects fermions and bosons - into the Standard Model. In the scenario we consider, the bino is the lightest supersymmetric partner, which makes it a good candidate for dark matter. Using razor variables and boosted decision trees, we are able to exclude Higgsinos up to 1.8 TeV for binos up to 1.3 TeV.
author2 Su, Shufang
author_facet Su, Shufang
Pyarelal, Adarsh
Pyarelal, Adarsh
author Pyarelal, Adarsh
Pyarelal, Adarsh
author_sort Pyarelal, Adarsh
title Hidden Higgses and Dark Matter at Current and Future Colliders
title_short Hidden Higgses and Dark Matter at Current and Future Colliders
title_full Hidden Higgses and Dark Matter at Current and Future Colliders
title_fullStr Hidden Higgses and Dark Matter at Current and Future Colliders
title_full_unstemmed Hidden Higgses and Dark Matter at Current and Future Colliders
title_sort hidden higgses and dark matter at current and future colliders
publisher The University of Arizona.
publishDate 2017
url http://hdl.handle.net/10150/624536
http://arizona.openrepository.com/arizona/handle/10150/624536
work_keys_str_mv AT pyarelaladarsh hiddenhiggsesanddarkmatteratcurrentandfuturecolliders
AT pyarelaladarsh hiddenhiggsesanddarkmatteratcurrentandfuturecolliders
_version_ 1718484281831981056