Single lens system for forward-viewing navigation and scanning side-viewing optical coherence tomography

The optical design for a dual modality endoscope based on piezo scanning fiber technology is presented including a novel technique to combine forward-viewing navigation and side viewing OCT. Potential applications include navigating body lumens such as the fallopian tube, biliary ducts and cardiovas...

Full description

Bibliographic Details
Main Authors: Tate, Tyler H., McGregor, Davis, Barton, Jennifer K.
Other Authors: Univ Arizona, Coll Opt Sci
Language:en
Published: SPIE-INT SOC OPTICAL ENGINEERING 2017
Subjects:
Online Access:Tyler H. Tate ; Davis McGregor and Jennifer K. Barton " Single lens system for forward-viewing navigation and scanning side-viewing optical coherence tomography ", Proc. SPIE 10040, Endoscopic Microscopy XII, 100400H (February 15, 2017); doi:10.1117/12.2271555; http://dx.doi.org/10.1117/12.2271555
http://hdl.handle.net/10150/624390
http://arizona.openrepository.com/arizona/handle/10150/624390
Description
Summary:The optical design for a dual modality endoscope based on piezo scanning fiber technology is presented including a novel technique to combine forward-viewing navigation and side viewing OCT. Potential applications include navigating body lumens such as the fallopian tube, biliary ducts and cardiovascular system. A custom cover plate provides a rotationally symmetric double reflection of the OCT beam to deviate and focus the OCT beam out the side of the endoscope for cross-sectional imaging of the tubal lumen. Considerations in the choice of the scanning fiber are explored and a new technique to increase the divergence angle of the scanning fiber to improve system performance is presented. Resolution and the necessary scanning density requirements to achieve Nyquist sampling of the full image are considered. The novel optical design lays the groundwork for a new approach integrating side-viewing OCT into multimodality endoscopes for small lumen imaging.