Synergies between Asteroseismology and Three-dimensional Simulations of Stellar Turbulence
Turbulent mixing of chemical elements by convection has fundamental effects on the evolution of stars. The standard algorithm at present, mixing-length theory (MLT), is intrinsically local, and must be supplemented by extensions with adjustable parameters. As a step toward reducing this arbitrarines...
Main Authors: | , |
---|---|
Other Authors: | |
Language: | en |
Published: |
IOP PUBLISHING LTD
2017
|
Subjects: | |
Online Access: | http://hdl.handle.net/10150/624377 http://arizona.openrepository.com/arizona/handle/10150/624377 |
id |
ndltd-arizona.edu-oai-arizona.openrepository.com-10150-624377 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-arizona.edu-oai-arizona.openrepository.com-10150-6243772017-06-25T03:00:33Z Synergies between Asteroseismology and Three-dimensional Simulations of Stellar Turbulence Arnett, W. David Moravveji, E. Univ Arizona, Steward Observ convection stars: general Turbulent mixing of chemical elements by convection has fundamental effects on the evolution of stars. The standard algorithm at present, mixing-length theory (MLT), is intrinsically local, and must be supplemented by extensions with adjustable parameters. As a step toward reducing this arbitrariness, we compare asteroseismically inferred internal structures of two Kepler slowly pulsating B stars (SPBs; M similar to 3.25M circle dot.) to predictions of 321D turbulence theory, based upon well-resolved, truly turbulent three-dimensional simulations that include boundary physics absent from MLT. We find promising agreement between the steepness and shapes of the theoretically predicted composition profile outside the convective region in 3D simulations and in asteroseismically constrained composition profiles in the best 1D models of the two SPBs. The structure and motion of the boundary layer, and the generation of waves, are discussed. 2017-02-14 Article Synergies between Asteroseismology and Three-dimensional Simulations of Stellar Turbulence 2017, 836 (2):L19 The Astrophysical Journal 2041-8213 10.3847/2041-8213/aa5cb0 http://hdl.handle.net/10150/624377 http://arizona.openrepository.com/arizona/handle/10150/624377 The Astrophysical Journal Letters en http://stacks.iop.org/2041-8205/836/i=2/a=L19?key=crossref.f1ddd6ee470c6ce2e75199750262cbf7 © 2017. The American Astronomical Society. All rights reserved. IOP PUBLISHING LTD |
collection |
NDLTD |
language |
en |
sources |
NDLTD |
topic |
convection stars: general |
spellingShingle |
convection stars: general Arnett, W. David Moravveji, E. Synergies between Asteroseismology and Three-dimensional Simulations of Stellar Turbulence |
description |
Turbulent mixing of chemical elements by convection has fundamental effects on the evolution of stars. The standard algorithm at present, mixing-length theory (MLT), is intrinsically local, and must be supplemented by extensions with adjustable parameters. As a step toward reducing this arbitrariness, we compare asteroseismically inferred internal structures of two Kepler slowly pulsating B stars (SPBs; M similar to 3.25M circle dot.) to predictions of 321D turbulence theory, based upon well-resolved, truly turbulent three-dimensional simulations that include boundary physics absent from MLT. We find promising agreement between the steepness and shapes of the theoretically predicted composition profile outside the convective region in 3D simulations and in asteroseismically constrained composition profiles in the best 1D models of the two SPBs. The structure and motion of the boundary layer, and the generation of waves, are discussed. |
author2 |
Univ Arizona, Steward Observ |
author_facet |
Univ Arizona, Steward Observ Arnett, W. David Moravveji, E. |
author |
Arnett, W. David Moravveji, E. |
author_sort |
Arnett, W. David |
title |
Synergies between Asteroseismology and Three-dimensional Simulations of Stellar Turbulence |
title_short |
Synergies between Asteroseismology and Three-dimensional Simulations of Stellar Turbulence |
title_full |
Synergies between Asteroseismology and Three-dimensional Simulations of Stellar Turbulence |
title_fullStr |
Synergies between Asteroseismology and Three-dimensional Simulations of Stellar Turbulence |
title_full_unstemmed |
Synergies between Asteroseismology and Three-dimensional Simulations of Stellar Turbulence |
title_sort |
synergies between asteroseismology and three-dimensional simulations of stellar turbulence |
publisher |
IOP PUBLISHING LTD |
publishDate |
2017 |
url |
http://hdl.handle.net/10150/624377 http://arizona.openrepository.com/arizona/handle/10150/624377 |
work_keys_str_mv |
AT arnettwdavid synergiesbetweenasteroseismologyandthreedimensionalsimulationsofstellarturbulence AT moravvejie synergiesbetweenasteroseismologyandthreedimensionalsimulationsofstellarturbulence |
_version_ |
1718463336808448000 |