A minimal actomyosin-based model predicts the dynamics of filopodia on neuronal dendrites

Dendritic filopodia are actin-filled dynamic subcellular structures that sprout on neuronal dendrites during neurogenesis. The exploratory motion of the filopodia is crucial for synaptogenesis, but the underlying mechanisms are poorly understood. To study filopodial motility, we collected and analyz...

Full description

Bibliographic Details
Main Authors: Marchenko, Olena O., Das, Sulagna, Yu, Ji, Novak, Igor L., Rodionov, Vladimir I., Efimova, Nadia, Svitkina, Tatyana, Wolgemuth, Charles W., Loew, Leslie M.
Other Authors: Univ Arizona, Dept Phys
Language:en
Published: AMER SOC CELL BIOLOGY 2017
Online Access:http://hdl.handle.net/10150/624039
http://arizona.openrepository.com/arizona/handle/10150/624039
id ndltd-arizona.edu-oai-arizona.openrepository.com-10150-624039
record_format oai_dc
spelling ndltd-arizona.edu-oai-arizona.openrepository.com-10150-6240392017-06-10T03:00:44Z A minimal actomyosin-based model predicts the dynamics of filopodia on neuronal dendrites Marchenko, Olena O. Das, Sulagna Yu, Ji Novak, Igor L. Rodionov, Vladimir I. Efimova, Nadia Svitkina, Tatyana Wolgemuth, Charles W. Loew, Leslie M. Univ Arizona, Dept Phys Univ Arizona, Dept Mol & Cellular Biol Dendritic filopodia are actin-filled dynamic subcellular structures that sprout on neuronal dendrites during neurogenesis. The exploratory motion of the filopodia is crucial for synaptogenesis, but the underlying mechanisms are poorly understood. To study filopodial motility, we collected and analyzed image data on filopodia in cultured rat hippocampal neurons. We hypothesized that mechanical feedback among the actin retrograde flow, myosin activity, and substrate adhesion gives rise to various filopodial behaviors. We formulated a minimal one-dimensional partial differential equation model that reproduced the range of observed motility. To validate our model, we systematically manipulated experimental correlates of parameters in the model: substrate adhesion strength, actin polymerization rate, myosin contractility, and the integrity of the putative microtubule-based barrier at the filopodium base. The model predicts the response of the system to each of these experimental perturbations, supporting the hypothesis that our actomyosin-driven mechanism controls dendritic filopodia dynamics. 2017-04-15 Article A minimal actomyosin-based model predicts the dynamics of filopodia on neuronal dendrites 2017, 28 (8):1021 Molecular Biology of the Cell 1059-1524 1939-4586 28228546 10.1091/mbc.E16-06-0461 http://hdl.handle.net/10150/624039 http://arizona.openrepository.com/arizona/handle/10150/624039 Molecular Biology of the Cell en http://www.molbiolcell.org/lookup/doi/10.1091/mbc.E16-06-0461 © AMERICAN SOCIETY FOR CELL BIOLOGY AMER SOC CELL BIOLOGY
collection NDLTD
language en
sources NDLTD
description Dendritic filopodia are actin-filled dynamic subcellular structures that sprout on neuronal dendrites during neurogenesis. The exploratory motion of the filopodia is crucial for synaptogenesis, but the underlying mechanisms are poorly understood. To study filopodial motility, we collected and analyzed image data on filopodia in cultured rat hippocampal neurons. We hypothesized that mechanical feedback among the actin retrograde flow, myosin activity, and substrate adhesion gives rise to various filopodial behaviors. We formulated a minimal one-dimensional partial differential equation model that reproduced the range of observed motility. To validate our model, we systematically manipulated experimental correlates of parameters in the model: substrate adhesion strength, actin polymerization rate, myosin contractility, and the integrity of the putative microtubule-based barrier at the filopodium base. The model predicts the response of the system to each of these experimental perturbations, supporting the hypothesis that our actomyosin-driven mechanism controls dendritic filopodia dynamics.
author2 Univ Arizona, Dept Phys
author_facet Univ Arizona, Dept Phys
Marchenko, Olena O.
Das, Sulagna
Yu, Ji
Novak, Igor L.
Rodionov, Vladimir I.
Efimova, Nadia
Svitkina, Tatyana
Wolgemuth, Charles W.
Loew, Leslie M.
author Marchenko, Olena O.
Das, Sulagna
Yu, Ji
Novak, Igor L.
Rodionov, Vladimir I.
Efimova, Nadia
Svitkina, Tatyana
Wolgemuth, Charles W.
Loew, Leslie M.
spellingShingle Marchenko, Olena O.
Das, Sulagna
Yu, Ji
Novak, Igor L.
Rodionov, Vladimir I.
Efimova, Nadia
Svitkina, Tatyana
Wolgemuth, Charles W.
Loew, Leslie M.
A minimal actomyosin-based model predicts the dynamics of filopodia on neuronal dendrites
author_sort Marchenko, Olena O.
title A minimal actomyosin-based model predicts the dynamics of filopodia on neuronal dendrites
title_short A minimal actomyosin-based model predicts the dynamics of filopodia on neuronal dendrites
title_full A minimal actomyosin-based model predicts the dynamics of filopodia on neuronal dendrites
title_fullStr A minimal actomyosin-based model predicts the dynamics of filopodia on neuronal dendrites
title_full_unstemmed A minimal actomyosin-based model predicts the dynamics of filopodia on neuronal dendrites
title_sort minimal actomyosin-based model predicts the dynamics of filopodia on neuronal dendrites
publisher AMER SOC CELL BIOLOGY
publishDate 2017
url http://hdl.handle.net/10150/624039
http://arizona.openrepository.com/arizona/handle/10150/624039
work_keys_str_mv AT marchenkoolenao aminimalactomyosinbasedmodelpredictsthedynamicsoffilopodiaonneuronaldendrites
AT dassulagna aminimalactomyosinbasedmodelpredictsthedynamicsoffilopodiaonneuronaldendrites
AT yuji aminimalactomyosinbasedmodelpredictsthedynamicsoffilopodiaonneuronaldendrites
AT novakigorl aminimalactomyosinbasedmodelpredictsthedynamicsoffilopodiaonneuronaldendrites
AT rodionovvladimiri aminimalactomyosinbasedmodelpredictsthedynamicsoffilopodiaonneuronaldendrites
AT efimovanadia aminimalactomyosinbasedmodelpredictsthedynamicsoffilopodiaonneuronaldendrites
AT svitkinatatyana aminimalactomyosinbasedmodelpredictsthedynamicsoffilopodiaonneuronaldendrites
AT wolgemuthcharlesw aminimalactomyosinbasedmodelpredictsthedynamicsoffilopodiaonneuronaldendrites
AT loewlesliem aminimalactomyosinbasedmodelpredictsthedynamicsoffilopodiaonneuronaldendrites
AT marchenkoolenao minimalactomyosinbasedmodelpredictsthedynamicsoffilopodiaonneuronaldendrites
AT dassulagna minimalactomyosinbasedmodelpredictsthedynamicsoffilopodiaonneuronaldendrites
AT yuji minimalactomyosinbasedmodelpredictsthedynamicsoffilopodiaonneuronaldendrites
AT novakigorl minimalactomyosinbasedmodelpredictsthedynamicsoffilopodiaonneuronaldendrites
AT rodionovvladimiri minimalactomyosinbasedmodelpredictsthedynamicsoffilopodiaonneuronaldendrites
AT efimovanadia minimalactomyosinbasedmodelpredictsthedynamicsoffilopodiaonneuronaldendrites
AT svitkinatatyana minimalactomyosinbasedmodelpredictsthedynamicsoffilopodiaonneuronaldendrites
AT wolgemuthcharlesw minimalactomyosinbasedmodelpredictsthedynamicsoffilopodiaonneuronaldendrites
AT loewlesliem minimalactomyosinbasedmodelpredictsthedynamicsoffilopodiaonneuronaldendrites
_version_ 1718457488630611968