A minimal actomyosin-based model predicts the dynamics of filopodia on neuronal dendrites
Dendritic filopodia are actin-filled dynamic subcellular structures that sprout on neuronal dendrites during neurogenesis. The exploratory motion of the filopodia is crucial for synaptogenesis, but the underlying mechanisms are poorly understood. To study filopodial motility, we collected and analyz...
Main Authors: | , , , , , , , , |
---|---|
Other Authors: | |
Language: | en |
Published: |
AMER SOC CELL BIOLOGY
2017
|
Online Access: | http://hdl.handle.net/10150/624039 http://arizona.openrepository.com/arizona/handle/10150/624039 |
id |
ndltd-arizona.edu-oai-arizona.openrepository.com-10150-624039 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-arizona.edu-oai-arizona.openrepository.com-10150-6240392017-06-10T03:00:44Z A minimal actomyosin-based model predicts the dynamics of filopodia on neuronal dendrites Marchenko, Olena O. Das, Sulagna Yu, Ji Novak, Igor L. Rodionov, Vladimir I. Efimova, Nadia Svitkina, Tatyana Wolgemuth, Charles W. Loew, Leslie M. Univ Arizona, Dept Phys Univ Arizona, Dept Mol & Cellular Biol Dendritic filopodia are actin-filled dynamic subcellular structures that sprout on neuronal dendrites during neurogenesis. The exploratory motion of the filopodia is crucial for synaptogenesis, but the underlying mechanisms are poorly understood. To study filopodial motility, we collected and analyzed image data on filopodia in cultured rat hippocampal neurons. We hypothesized that mechanical feedback among the actin retrograde flow, myosin activity, and substrate adhesion gives rise to various filopodial behaviors. We formulated a minimal one-dimensional partial differential equation model that reproduced the range of observed motility. To validate our model, we systematically manipulated experimental correlates of parameters in the model: substrate adhesion strength, actin polymerization rate, myosin contractility, and the integrity of the putative microtubule-based barrier at the filopodium base. The model predicts the response of the system to each of these experimental perturbations, supporting the hypothesis that our actomyosin-driven mechanism controls dendritic filopodia dynamics. 2017-04-15 Article A minimal actomyosin-based model predicts the dynamics of filopodia on neuronal dendrites 2017, 28 (8):1021 Molecular Biology of the Cell 1059-1524 1939-4586 28228546 10.1091/mbc.E16-06-0461 http://hdl.handle.net/10150/624039 http://arizona.openrepository.com/arizona/handle/10150/624039 Molecular Biology of the Cell en http://www.molbiolcell.org/lookup/doi/10.1091/mbc.E16-06-0461 © AMERICAN SOCIETY FOR CELL BIOLOGY AMER SOC CELL BIOLOGY |
collection |
NDLTD |
language |
en |
sources |
NDLTD |
description |
Dendritic filopodia are actin-filled dynamic subcellular structures that sprout on neuronal dendrites during neurogenesis. The exploratory motion of the filopodia is crucial for synaptogenesis, but the underlying mechanisms are poorly understood. To study filopodial motility, we collected and analyzed image data on filopodia in cultured rat hippocampal neurons. We hypothesized that mechanical feedback among the actin retrograde flow, myosin activity, and substrate adhesion gives rise to various filopodial behaviors. We formulated a minimal one-dimensional partial differential equation model that reproduced the range of observed motility. To validate our model, we systematically manipulated experimental correlates of parameters in the model: substrate adhesion strength, actin polymerization rate, myosin contractility, and the integrity of the putative microtubule-based barrier at the filopodium base. The model predicts the response of the system to each of these experimental perturbations, supporting the hypothesis that our actomyosin-driven mechanism controls dendritic filopodia dynamics. |
author2 |
Univ Arizona, Dept Phys |
author_facet |
Univ Arizona, Dept Phys Marchenko, Olena O. Das, Sulagna Yu, Ji Novak, Igor L. Rodionov, Vladimir I. Efimova, Nadia Svitkina, Tatyana Wolgemuth, Charles W. Loew, Leslie M. |
author |
Marchenko, Olena O. Das, Sulagna Yu, Ji Novak, Igor L. Rodionov, Vladimir I. Efimova, Nadia Svitkina, Tatyana Wolgemuth, Charles W. Loew, Leslie M. |
spellingShingle |
Marchenko, Olena O. Das, Sulagna Yu, Ji Novak, Igor L. Rodionov, Vladimir I. Efimova, Nadia Svitkina, Tatyana Wolgemuth, Charles W. Loew, Leslie M. A minimal actomyosin-based model predicts the dynamics of filopodia on neuronal dendrites |
author_sort |
Marchenko, Olena O. |
title |
A minimal actomyosin-based model predicts the dynamics of filopodia on neuronal dendrites |
title_short |
A minimal actomyosin-based model predicts the dynamics of filopodia on neuronal dendrites |
title_full |
A minimal actomyosin-based model predicts the dynamics of filopodia on neuronal dendrites |
title_fullStr |
A minimal actomyosin-based model predicts the dynamics of filopodia on neuronal dendrites |
title_full_unstemmed |
A minimal actomyosin-based model predicts the dynamics of filopodia on neuronal dendrites |
title_sort |
minimal actomyosin-based model predicts the dynamics of filopodia on neuronal dendrites |
publisher |
AMER SOC CELL BIOLOGY |
publishDate |
2017 |
url |
http://hdl.handle.net/10150/624039 http://arizona.openrepository.com/arizona/handle/10150/624039 |
work_keys_str_mv |
AT marchenkoolenao aminimalactomyosinbasedmodelpredictsthedynamicsoffilopodiaonneuronaldendrites AT dassulagna aminimalactomyosinbasedmodelpredictsthedynamicsoffilopodiaonneuronaldendrites AT yuji aminimalactomyosinbasedmodelpredictsthedynamicsoffilopodiaonneuronaldendrites AT novakigorl aminimalactomyosinbasedmodelpredictsthedynamicsoffilopodiaonneuronaldendrites AT rodionovvladimiri aminimalactomyosinbasedmodelpredictsthedynamicsoffilopodiaonneuronaldendrites AT efimovanadia aminimalactomyosinbasedmodelpredictsthedynamicsoffilopodiaonneuronaldendrites AT svitkinatatyana aminimalactomyosinbasedmodelpredictsthedynamicsoffilopodiaonneuronaldendrites AT wolgemuthcharlesw aminimalactomyosinbasedmodelpredictsthedynamicsoffilopodiaonneuronaldendrites AT loewlesliem aminimalactomyosinbasedmodelpredictsthedynamicsoffilopodiaonneuronaldendrites AT marchenkoolenao minimalactomyosinbasedmodelpredictsthedynamicsoffilopodiaonneuronaldendrites AT dassulagna minimalactomyosinbasedmodelpredictsthedynamicsoffilopodiaonneuronaldendrites AT yuji minimalactomyosinbasedmodelpredictsthedynamicsoffilopodiaonneuronaldendrites AT novakigorl minimalactomyosinbasedmodelpredictsthedynamicsoffilopodiaonneuronaldendrites AT rodionovvladimiri minimalactomyosinbasedmodelpredictsthedynamicsoffilopodiaonneuronaldendrites AT efimovanadia minimalactomyosinbasedmodelpredictsthedynamicsoffilopodiaonneuronaldendrites AT svitkinatatyana minimalactomyosinbasedmodelpredictsthedynamicsoffilopodiaonneuronaldendrites AT wolgemuthcharlesw minimalactomyosinbasedmodelpredictsthedynamicsoffilopodiaonneuronaldendrites AT loewlesliem minimalactomyosinbasedmodelpredictsthedynamicsoffilopodiaonneuronaldendrites |
_version_ |
1718457488630611968 |