Analysis of twelve-month degradation in three polycrystalline photovoltaic modules
Polycrystalline silicon photovoltaic (PV) modules have the advantage of lower manufacturing cost as compared to their monocrystalline counterparts, but generally exhibit both lower initial module efficiencies and more significant early-stage efficiency degradation than do similar monocrystalline PV...
Main Authors: | , , |
---|---|
Other Authors: | |
Language: | en |
Published: |
SPIE-INT SOC OPTICAL ENGINEERING
2016
|
Subjects: | |
Online Access: | T. Lai ; B. G. Potter and K. Simmons-Potter " Analysis of twelve-month degradation in three polycrystalline photovoltaic modules ", Proc. SPIE 9938, Reliability of Photovoltaic Cells, Modules, Components, and Systems IX, 99380O (September 26, 2016); doi:10.1117/12.2237527; http://dx.doi.org/10.1117/12.2237527 http://hdl.handle.net/10150/622543 http://arizona.openrepository.com/arizona/handle/10150/622543 |
id |
ndltd-arizona.edu-oai-arizona.openrepository.com-10150-622543 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-arizona.edu-oai-arizona.openrepository.com-10150-6225432017-02-16T03:01:05Z Analysis of twelve-month degradation in three polycrystalline photovoltaic modules Lai, T. Potter, B. G. Simmons-Potter, K. Univ Arizona The Univ. of Arizona (United States) The Univ. of Arizona (United States) The Univ. of Arizona (United States) degradation accelerated lifecycle testing environmental chamber polycrystalline photovoltaic Polycrystalline silicon photovoltaic (PV) modules have the advantage of lower manufacturing cost as compared to their monocrystalline counterparts, but generally exhibit both lower initial module efficiencies and more significant early-stage efficiency degradation than do similar monocrystalline PV modules. For both technologies, noticeable deterioration in power conversion efficiency typically occurs over the first two years of usage. Estimating PV lifetime by examining the performance degradation behavior under given environmental conditions is, therefore, one of continual goals for experimental research and economic analysis. In the present work, accelerated lifecycle testing (ALT) on three polycrystalline PV technologies was performed in a full-scale, industrial-standard environmental chamber equipped with single-sun irradiance capability, providing an illumination uniformity of 98% over a 2 x 1.6m area. In order to investigate environmental aging effects, time-dependent PV performance (I-V characteristic) was evaluated over a recurring, compressed day-night cycle, which simulated local daily solar insolation for the southwestern United States, followed by dark (night) periods. During a total test time of just under 4 months that corresponded to a year equivalent exposure on a fielded module, the temperature and humidity varied in ranges from 3 degrees C to 40 degrees C and 5% to 85% based on annual weather profiles for Tucson, AZ. Removing the temperature de-rating effect that was clearly seen in the data enabled the computation of normalized efficiency degradation with time and environmental exposure. Results confirm the impact of environmental conditions on the module long-term performance. Overall, more than 2% efficiency degradation in the first year of usage was observed for all thee polycrystalline Si solar modules. The average 5-year degradation of each PV technology was estimated based on their determined degradation rates. 2016-09-26 Article T. Lai ; B. G. Potter and K. Simmons-Potter " Analysis of twelve-month degradation in three polycrystalline photovoltaic modules ", Proc. SPIE 9938, Reliability of Photovoltaic Cells, Modules, Components, and Systems IX, 99380O (September 26, 2016); doi:10.1117/12.2237527; http://dx.doi.org/10.1117/12.2237527 0277-786X 10.1117/12.2237527 http://hdl.handle.net/10150/622543 http://arizona.openrepository.com/arizona/handle/10150/622543 Reliability of Photovoltaic Cells, Modules, Components, and Systems IX en http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2237527 © 2016 SPIE SPIE-INT SOC OPTICAL ENGINEERING |
collection |
NDLTD |
language |
en |
sources |
NDLTD |
topic |
degradation accelerated lifecycle testing environmental chamber polycrystalline photovoltaic |
spellingShingle |
degradation accelerated lifecycle testing environmental chamber polycrystalline photovoltaic Lai, T. Potter, B. G. Simmons-Potter, K. Analysis of twelve-month degradation in three polycrystalline photovoltaic modules |
description |
Polycrystalline silicon photovoltaic (PV) modules have the advantage of lower manufacturing cost as compared to their monocrystalline counterparts, but generally exhibit both lower initial module efficiencies and more significant early-stage efficiency degradation than do similar monocrystalline PV modules. For both technologies, noticeable deterioration in power conversion efficiency typically occurs over the first two years of usage. Estimating PV lifetime by examining the performance degradation behavior under given environmental conditions is, therefore, one of continual goals for experimental research and economic analysis. In the present work, accelerated lifecycle testing (ALT) on three polycrystalline PV technologies was performed in a full-scale, industrial-standard environmental chamber equipped with single-sun irradiance capability, providing an illumination uniformity of 98% over a 2 x 1.6m area. In order to investigate environmental aging effects, time-dependent PV performance (I-V characteristic) was evaluated over a recurring, compressed day-night cycle, which simulated local daily solar insolation for the southwestern United States, followed by dark (night) periods. During a total test time of just under 4 months that corresponded to a year equivalent exposure on a fielded module, the temperature and humidity varied in ranges from 3 degrees C to 40 degrees C and 5% to 85% based on annual weather profiles for Tucson, AZ. Removing the temperature de-rating effect that was clearly seen in the data enabled the computation of normalized efficiency degradation with time and environmental exposure. Results confirm the impact of environmental conditions on the module long-term performance. Overall, more than 2% efficiency degradation in the first year of usage was observed for all thee polycrystalline Si solar modules. The average 5-year degradation of each PV technology was estimated based on their determined degradation rates. |
author2 |
Univ Arizona |
author_facet |
Univ Arizona Lai, T. Potter, B. G. Simmons-Potter, K. |
author |
Lai, T. Potter, B. G. Simmons-Potter, K. |
author_sort |
Lai, T. |
title |
Analysis of twelve-month degradation in three polycrystalline photovoltaic modules |
title_short |
Analysis of twelve-month degradation in three polycrystalline photovoltaic modules |
title_full |
Analysis of twelve-month degradation in three polycrystalline photovoltaic modules |
title_fullStr |
Analysis of twelve-month degradation in three polycrystalline photovoltaic modules |
title_full_unstemmed |
Analysis of twelve-month degradation in three polycrystalline photovoltaic modules |
title_sort |
analysis of twelve-month degradation in three polycrystalline photovoltaic modules |
publisher |
SPIE-INT SOC OPTICAL ENGINEERING |
publishDate |
2016 |
url |
T. Lai ; B. G. Potter and K. Simmons-Potter " Analysis of twelve-month degradation in three polycrystalline photovoltaic modules ", Proc. SPIE 9938, Reliability of Photovoltaic Cells, Modules, Components, and Systems IX, 99380O (September 26, 2016); doi:10.1117/12.2237527; http://dx.doi.org/10.1117/12.2237527 http://hdl.handle.net/10150/622543 http://arizona.openrepository.com/arizona/handle/10150/622543 |
work_keys_str_mv |
AT lait analysisoftwelvemonthdegradationinthreepolycrystallinephotovoltaicmodules AT potterbg analysisoftwelvemonthdegradationinthreepolycrystallinephotovoltaicmodules AT simmonspotterk analysisoftwelvemonthdegradationinthreepolycrystallinephotovoltaicmodules |
_version_ |
1718413868101795840 |