Using Telemetry to Confirm Equipment Performance and mission Life Requirements

The tools, technologies, practices, policies, procedures and procurement process developed and implemented over 50 years to produce highly reliable spacecraft and spacecraft subsystem equipment have yielded spacecraft and launch vehicles whose reliability is dominated by premature equipment failures...

Full description

Bibliographic Details
Main Author: Losik, Len
Other Authors: Failure Analysis
Language:en_US
Published: International Foundation for Telemetering 2012
Online Access:http://hdl.handle.net/10150/581849
Description
Summary:The tools, technologies, practices, policies, procedures and procurement process developed and implemented over 50 years to produce highly reliable spacecraft and spacecraft subsystem equipment have yielded spacecraft and launch vehicles whose reliability is dominated by premature equipment failures and surprise equipment failures at yearly rates as high as 25% that increase risk and decrease safety, mission assurance and effectiveness. Large, complex aerospace systems such as aircraft, launch vehicle and satellites are subjected to most exhaustive and comprehensive acceptance-testing program at the factory that is also used in other industries and that also suffer from the high premature failure rates. Desired/required spacecraft equipment performance is measured confirmed during factory testing, however equipment usable/mission life requirement is not measured but calculated manually and so the spacecraft and launch vehicle equipment that will fail prematurely are not identified and replaced before use. Spacecraft equipment mission-life is calculated using stochastic equations from probability reliability analysis engineering standards such as MIL STD 217. The change in the engineering practices used to manufacture and test spacecraft to identify the equipment that will fail prematurely include using a prognostic and health management (PHM) program. The PHM includes using predictive algorithms to convert equipment analog telemetry of any type into a measurement of equipment usable life by demodulating the telemetry behavior in time, amplitude, frequency and phase. The conversion of equipment analog telemetry from performance data to a measurement of usable life is done in a prognostic analysis. A prognostic analysis includes an engineering analysis that is shared with manufacturing and test, but results in premature equipment failures at rates as high as 70% once the equipment gets to space in space, but also includes a scientific analysis of the analog telemetry so that conjecture and speculation is not used to identify the presence as systemic noise.