Summary: | Cancer remains a global pandemic and is rapidly overtaking other diseases as the no.1 killer in developing nations. Photodynamic therapy (PDT) has been advanced as a minimally invasive cancer therapy. In addition, the emergence of harmful microbes with increasing resistance to drugs has prompted the employment of photodynamic antimicrobial chemotherapy (PACT) as a promising alternative to combat antibiotic resistance. In PDT and PACT, a photosensitizer (dye/drug) upon activation by light transfers energy to molecular oxygen producing singlet oxygen which kills cells. There is increased attention and research into more selective and non-aggregated photosensitizers that will better PDT in treating cancer. This research work is focused on design and synthesis of non-aggregated asymmetric phthalocyanines (dyes) tagged with mitochondrial targeting vehicles to maximize selectivity and photo-killing of tumor cells. Chapter 1 presents a brief review of the current status of PDT and treatment of cancer. The three components of PDT namely, light, oxygen and the photosensitizer, are briefly discussed giving a concise overview of the development of each of them in bettering PDT as an alternative to cancer therapy. Chapter 2 outlines the design, synthesis and characterization of two non-aggregated symmetric ZnPc isomers that have improved water solubility due to incorporation of triethylene glycol groups. The extension of the max absorption to near-IR via non-peripheral substitution on the Pc macrocycle is reported, while comparing the photophysical characteristics of both isomers. Chapter 3 details the improved selectivity of photosensitizers by conjugating ZnPcs to rhodamine B, a delocalized lipophilic cation, which targets the mitochondria of the cell. This conjugation achieved 70% more cell death suggesting that incorporation of rhodamine improved cellular uptake and localization of the photosensitizers which is crucial. Chapters 4 and 5 cover the design, synthesis, characterization, and photodynamic therapy evaluation of ZnPc and phosphorous phthalocyanines. Introduction of phosphorous as an electron deficient central atom promoted a 42 nm bathochromic shift relative to the corresponding ZnPc isomer. Additionally, the effect of peripheral and non-peripheral substitution on phototoxicity of these new compounds is studied and reported. Chapter 5 also gives concluding remarks, and future directions of this work.
|