Genealogical Correspondence of Learning and Memory Centers across Phyla

Across bilaterian phyla, learning and memory allows animals to benefit from central-place foraging, return to ideal food sources, choose mates and avoid dangerous or harmful external stimuli. Although these behaviors are comparable in both vertebrate and invertebrate animals, it is unknown whether o...

Full description

Bibliographic Details
Main Author: Wolff, Gabriella Hannah
Other Authors: Strausfeld, Nicholas J.
Language:en_US
Published: The University of Arizona. 2015
Subjects:
Online Access:http://hdl.handle.net/10150/556847
id ndltd-arizona.edu-oai-arizona.openrepository.com-10150-556847
record_format oai_dc
spelling ndltd-arizona.edu-oai-arizona.openrepository.com-10150-5568472015-10-23T05:43:38Z Genealogical Correspondence of Learning and Memory Centers across Phyla Wolff, Gabriella Hannah Strausfeld, Nicholas J. Gronenberg, Wulfila Hildebrand, John G. Nighorn, Alan J. Strausfeld, Nicholas J. hippocampus invertebrate learning memory mushroom body Neuroscience evolution Across bilaterian phyla, learning and memory allows animals to benefit from central-place foraging, return to ideal food sources, choose mates and avoid dangerous or harmful external stimuli. Although these behaviors are comparable in both vertebrate and invertebrate animals, it is unknown whether or not they are mediated by homologous brain structures. In insects, paired, lobate forebrain structures called mushroom bodies receive input from primary sensory neuropils and are necessary for learning and memory, whereas in crustaceans, this behavior is mediated by paired, compact forebrain structures called hemiellipsoid bodies. Mammalian learning and memory is mediated by the paired, horn-shaped hippocampi, which also receive sensory input and are likewise situated in the forebrain. Did these structures evolve independently along with the ability for animals to learn and remember associations and places? Alternatively, the hypothesis posited in this dissertation is that the last bilaterian ancestor already possessed the ability to learn and adapt to its environment, behavior mediated by paired forebrain structures that evolved divergently into the elaborated forms we observe in extant, crown-group taxa. This hypothesis is investigated and discussed in the following reports: 1) a review of insect brain anatomy and functional connectivity, including a description of mushroom bodies, in the context of arthropod evolution; 2) a comparison of neuroanatomy, circuitry, and protein expression between insect mushroom bodies and Malacostracan crustacean hemiellipsoid bodies, using cockroaches and Caribbean hermit crabs as representatives of their classes; 3) a deeper investigation of the fine structure of neuronal organization in the hemiellipsoid body of the Caribbean hermit crab, focusing on electron microscopical observations and comparisons to the ultrastructure of the fruit fly mushroom body; 4) a survey of four invertebrate Phyla, employing the strategy of comparing neuroanatomy and protein expression to investigate whether higher order forebrain structures in these animals were inherited from a common ancestor; 5) a comparison of neuroanatomy, connectivity, and protein expression in insect mushroom bodies and mammalian hippocampus, including a survey of PKA-Cα in these and corresponding structures across the Chordata. The total evidence suggests that a common Bilaterian ancestor possessed a center that evolved to become mushroom bodies in invertebrates and hippocampus in vertebrates. 2015 text Electronic Dissertation http://hdl.handle.net/10150/556847 en_US Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. The University of Arizona.
collection NDLTD
language en_US
sources NDLTD
topic hippocampus
invertebrate
learning
memory
mushroom body
Neuroscience
evolution
spellingShingle hippocampus
invertebrate
learning
memory
mushroom body
Neuroscience
evolution
Wolff, Gabriella Hannah
Genealogical Correspondence of Learning and Memory Centers across Phyla
description Across bilaterian phyla, learning and memory allows animals to benefit from central-place foraging, return to ideal food sources, choose mates and avoid dangerous or harmful external stimuli. Although these behaviors are comparable in both vertebrate and invertebrate animals, it is unknown whether or not they are mediated by homologous brain structures. In insects, paired, lobate forebrain structures called mushroom bodies receive input from primary sensory neuropils and are necessary for learning and memory, whereas in crustaceans, this behavior is mediated by paired, compact forebrain structures called hemiellipsoid bodies. Mammalian learning and memory is mediated by the paired, horn-shaped hippocampi, which also receive sensory input and are likewise situated in the forebrain. Did these structures evolve independently along with the ability for animals to learn and remember associations and places? Alternatively, the hypothesis posited in this dissertation is that the last bilaterian ancestor already possessed the ability to learn and adapt to its environment, behavior mediated by paired forebrain structures that evolved divergently into the elaborated forms we observe in extant, crown-group taxa. This hypothesis is investigated and discussed in the following reports: 1) a review of insect brain anatomy and functional connectivity, including a description of mushroom bodies, in the context of arthropod evolution; 2) a comparison of neuroanatomy, circuitry, and protein expression between insect mushroom bodies and Malacostracan crustacean hemiellipsoid bodies, using cockroaches and Caribbean hermit crabs as representatives of their classes; 3) a deeper investigation of the fine structure of neuronal organization in the hemiellipsoid body of the Caribbean hermit crab, focusing on electron microscopical observations and comparisons to the ultrastructure of the fruit fly mushroom body; 4) a survey of four invertebrate Phyla, employing the strategy of comparing neuroanatomy and protein expression to investigate whether higher order forebrain structures in these animals were inherited from a common ancestor; 5) a comparison of neuroanatomy, connectivity, and protein expression in insect mushroom bodies and mammalian hippocampus, including a survey of PKA-Cα in these and corresponding structures across the Chordata. The total evidence suggests that a common Bilaterian ancestor possessed a center that evolved to become mushroom bodies in invertebrates and hippocampus in vertebrates.
author2 Strausfeld, Nicholas J.
author_facet Strausfeld, Nicholas J.
Wolff, Gabriella Hannah
author Wolff, Gabriella Hannah
author_sort Wolff, Gabriella Hannah
title Genealogical Correspondence of Learning and Memory Centers across Phyla
title_short Genealogical Correspondence of Learning and Memory Centers across Phyla
title_full Genealogical Correspondence of Learning and Memory Centers across Phyla
title_fullStr Genealogical Correspondence of Learning and Memory Centers across Phyla
title_full_unstemmed Genealogical Correspondence of Learning and Memory Centers across Phyla
title_sort genealogical correspondence of learning and memory centers across phyla
publisher The University of Arizona.
publishDate 2015
url http://hdl.handle.net/10150/556847
work_keys_str_mv AT wolffgabriellahannah genealogicalcorrespondenceoflearningandmemorycentersacrossphyla
_version_ 1718109179937292288