Design Techniques for Timing Circuits in Wireline and Wireless Communication Systems

Clock and data recovery (CDR) circuit and frequency synthesizer are two essential timing circuits in wireline and wireless communication systems, respectively. With multigigabits/s high speed links and emerging 4G wireless system widely used in communication backbone infrastructures and consumer ele...

Full description

Bibliographic Details
Main Author: Huang, Deping
Other Authors: Roveda, Janet Meiling
Language:en_US
Published: The University of Arizona. 2014
Subjects:
PLL
Online Access:http://hdl.handle.net/10150/344107
id ndltd-arizona.edu-oai-arizona.openrepository.com-10150-344107
record_format oai_dc
collection NDLTD
language en_US
sources NDLTD
topic clock and data recovery
frequency synthesizer
oscillator
PLL
Electrical & Computer Engineering
automatic frequency calibration
spellingShingle clock and data recovery
frequency synthesizer
oscillator
PLL
Electrical & Computer Engineering
automatic frequency calibration
Huang, Deping
Design Techniques for Timing Circuits in Wireline and Wireless Communication Systems
description Clock and data recovery (CDR) circuit and frequency synthesizer are two essential timing circuits in wireline and wireless communication systems, respectively. With multigigabits/s high speed links and emerging 4G wireless system widely used in communication backbone infrastructures and consumer electronic devices, effective design of CDR and frequency synthesizer has become more and more important. The advanced scaled-down CMOS process has the limitations of leakage current, low supply voltage and process variation which pose great challenge to the analog circuit design. To overcome these issues, a digital intensive CDR solution is needed. Besides, it is desirable for the CDR to cover a wide range of data-rate and to be reference-less for improved flexibility. As for the frequency synthesizer design, the support for multi-standard to reduce the cost and area is desirable. In this work, a digital reference-less CDR is proposed to support continuous datarate ranging from 1 Gbps to 16 Gbps. The CDR adopts an 8 GHz~16 GHz DCO to achieve low random noise performance. A reference-less digital frequency locking loop is included in the system as the acquisition assistance for the CDR loop. To address the difficulty of jitter and stability evaluations for bang-band CDR, a Simulink model is developed to find out the jitter transfer (JTRAN), jitter generation (JGEN) and jitter tolerance (JTOL) performances for the CDR. The prototype CDR is implemented in a 65 nm CMOS process. The core area is 0.68 mm². At 16 Gbps, the CDR consumes a power of 92.5 mW and is able to tolerate a sinusoidal jitter with an amplitude of 0.4 UI and a frequency of 4 MHz. The second part of this dissertation develops a frequency synthesizer for multistandard wireless receivers. The frequency synthesizer is based on an analog fractional-N PLL. Optimally-coupled quadrature voltage-controlled-oscillator (QVCO), dividers and harmonic rejection single sideband mixer (HR-SSBmixer) are combined to synthesize the desired frequency range without posing much phase noise penalty on the QVCO. The QVCO adopts a new phase-shift scheme to improve phase noise and to eliminate bimodal oscillation. Combining harmonic rejection and single sideband mixing, the HR-SSBmixer is developed to suppress spurious signals. Designed in a 0.13-μm CMOS technology, the synthesizer occupies an active area of 1.86 mm² and consumes 35.6 to 52.62 mW of power. Measurement results show that the synthesizer frequency range, the phase noise, the settling time and the spur performances meet the specifications of the wireless receivers for the above standards. For a wide range frequency synthesizer, an automatic frequency calibration circuit (AFC) is needed to select proper oscillator tuning curve before the PLL settling. An improved counter-based AFC is proposed in this dissertation that provides a more robust and faster tuning curve searching process. The proposed AFC adopts a time-to-digital converter (TDC), which is able to captures the fractional VCO cycle information within the counting window, to improve the AFC frequency detection accuracy. The TDC-based AFC is designed in a 0.13-μm CMOS technology. Simulation results show that the TDCbased AFC greatly improves the frequency detection accuracy and consequently for a given frequency detection resolution reduces the AFC calibration time.
author2 Roveda, Janet Meiling
author_facet Roveda, Janet Meiling
Huang, Deping
author Huang, Deping
author_sort Huang, Deping
title Design Techniques for Timing Circuits in Wireline and Wireless Communication Systems
title_short Design Techniques for Timing Circuits in Wireline and Wireless Communication Systems
title_full Design Techniques for Timing Circuits in Wireline and Wireless Communication Systems
title_fullStr Design Techniques for Timing Circuits in Wireline and Wireless Communication Systems
title_full_unstemmed Design Techniques for Timing Circuits in Wireline and Wireless Communication Systems
title_sort design techniques for timing circuits in wireline and wireless communication systems
publisher The University of Arizona.
publishDate 2014
url http://hdl.handle.net/10150/344107
work_keys_str_mv AT huangdeping designtechniquesfortimingcircuitsinwirelineandwirelesscommunicationsystems
_version_ 1718107777753153536
spelling ndltd-arizona.edu-oai-arizona.openrepository.com-10150-3441072015-10-23T05:35:59Z Design Techniques for Timing Circuits in Wireline and Wireless Communication Systems Huang, Deping Roveda, Janet Meiling Rodriguez, Jeffrey Xin, Hao Cox, David Roveda, Janet Meiling clock and data recovery frequency synthesizer oscillator PLL Electrical & Computer Engineering automatic frequency calibration Clock and data recovery (CDR) circuit and frequency synthesizer are two essential timing circuits in wireline and wireless communication systems, respectively. With multigigabits/s high speed links and emerging 4G wireless system widely used in communication backbone infrastructures and consumer electronic devices, effective design of CDR and frequency synthesizer has become more and more important. The advanced scaled-down CMOS process has the limitations of leakage current, low supply voltage and process variation which pose great challenge to the analog circuit design. To overcome these issues, a digital intensive CDR solution is needed. Besides, it is desirable for the CDR to cover a wide range of data-rate and to be reference-less for improved flexibility. As for the frequency synthesizer design, the support for multi-standard to reduce the cost and area is desirable. In this work, a digital reference-less CDR is proposed to support continuous datarate ranging from 1 Gbps to 16 Gbps. The CDR adopts an 8 GHz~16 GHz DCO to achieve low random noise performance. A reference-less digital frequency locking loop is included in the system as the acquisition assistance for the CDR loop. To address the difficulty of jitter and stability evaluations for bang-band CDR, a Simulink model is developed to find out the jitter transfer (JTRAN), jitter generation (JGEN) and jitter tolerance (JTOL) performances for the CDR. The prototype CDR is implemented in a 65 nm CMOS process. The core area is 0.68 mm². At 16 Gbps, the CDR consumes a power of 92.5 mW and is able to tolerate a sinusoidal jitter with an amplitude of 0.4 UI and a frequency of 4 MHz. The second part of this dissertation develops a frequency synthesizer for multistandard wireless receivers. The frequency synthesizer is based on an analog fractional-N PLL. Optimally-coupled quadrature voltage-controlled-oscillator (QVCO), dividers and harmonic rejection single sideband mixer (HR-SSBmixer) are combined to synthesize the desired frequency range without posing much phase noise penalty on the QVCO. The QVCO adopts a new phase-shift scheme to improve phase noise and to eliminate bimodal oscillation. Combining harmonic rejection and single sideband mixing, the HR-SSBmixer is developed to suppress spurious signals. Designed in a 0.13-μm CMOS technology, the synthesizer occupies an active area of 1.86 mm² and consumes 35.6 to 52.62 mW of power. Measurement results show that the synthesizer frequency range, the phase noise, the settling time and the spur performances meet the specifications of the wireless receivers for the above standards. For a wide range frequency synthesizer, an automatic frequency calibration circuit (AFC) is needed to select proper oscillator tuning curve before the PLL settling. An improved counter-based AFC is proposed in this dissertation that provides a more robust and faster tuning curve searching process. The proposed AFC adopts a time-to-digital converter (TDC), which is able to captures the fractional VCO cycle information within the counting window, to improve the AFC frequency detection accuracy. The TDC-based AFC is designed in a 0.13-μm CMOS technology. Simulation results show that the TDCbased AFC greatly improves the frequency detection accuracy and consequently for a given frequency detection resolution reduces the AFC calibration time. 2014 text Electronic Dissertation http://hdl.handle.net/10150/344107 en_US Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. The University of Arizona.