Development Of The Depth-Fused Multi-Focal-Plane Display Technology

Conventional stereoscopic displays present a pair of stereoscopic images on a single and fixed image plane. In consequence, these displays lack the capability of correctly rendering focus cues (i.e. accommodation and retinal blur) and may induce the discrepancy between accommodation and convergence....

Full description

Bibliographic Details
Main Author: Hu, Xinda
Other Authors: Hua, Hong
Language:en_US
Published: The University of Arizona. 2014
Subjects:
Online Access:http://hdl.handle.net/10150/338957
Description
Summary:Conventional stereoscopic displays present a pair of stereoscopic images on a single and fixed image plane. In consequence, these displays lack the capability of correctly rendering focus cues (i.e. accommodation and retinal blur) and may induce the discrepancy between accommodation and convergence. A number of visual artifacts associated with incorrect focus cues in stereoscopic displays have been reported, limiting the applicability of these displays for demanding applications and daily usage. Depth-fused multi-focal-plane display was proposed to create a fixed-viewpoint volumetric display capable of rendering correct or nearly-correct focus cues in a stereoscopic display through a small number of discretely placed focal planes. It effectively addresses the negative effects of conventional stereoscopic displays on depth perception accuracy and visual fatigue. In this dissertation, the fundamental design methods and considerations of depth-fused displays were refined and extended based on previous works and a high-resolution optical see-through multi-focal-plane head-mounted display enabled by state-of-the-art freeform optics was developed. The prototype system is capable of rendering nearly-correct focus cues for a large volume of 3D space extending into a depth range from 0 to 3 diopters at flicker-free speed. By incorporating freeform optics, the prototype not only achieves high quality imagery across a large 3D volume for the virtual display path but it also maintains better than 0.5 arcminutes visual resolution of the see-through view. The optical design, implementation and experimental validation of the display are presented and discussed in detail.