A DDDAS-Based Multi-Scale Framework for Pedestrian Behavior Modeling and Interactions with Drivers

A multi-scale agent-based simulation framework is firstly proposed to analyze pedestrian delays at signalized crosswalks in large urban areas under different conditions. The aggregated-level model runs under normal conditions, where each crosswalk is represented as an agent. Pedestrian counts colle...

Full description

Bibliographic Details
Main Author: Xi, Hui
Other Authors: Son, Young-Jun
Language:en_US
Published: The University of Arizona. 2013
Subjects:
Online Access:http://hdl.handle.net/10150/306361
id ndltd-arizona.edu-oai-arizona.openrepository.com-10150-306361
record_format oai_dc
collection NDLTD
language en_US
sources NDLTD
topic decision making
interaction
pedestrian behavior
Systems & Industrial Engineering
crowd modeling
spellingShingle decision making
interaction
pedestrian behavior
Systems & Industrial Engineering
crowd modeling
Xi, Hui
A DDDAS-Based Multi-Scale Framework for Pedestrian Behavior Modeling and Interactions with Drivers
description A multi-scale agent-based simulation framework is firstly proposed to analyze pedestrian delays at signalized crosswalks in large urban areas under different conditions. The aggregated-level model runs under normal conditions, where each crosswalk is represented as an agent. Pedestrian counts collected near crosswalks are utilized to derive the binary choice probability from a utility maximization model. The derived probability function is utilized based on the extended Adam's model to estimate an average pedestrian delay with corresponding traffic flow rate and traffic light control at each crosswalk. When abnormality is detected, the detailed-level model with each pedestrian as an agent is running in the affected subareas. Pedestrian decision-making under abnormal conditions, physical movement, and crowd congestion are considered in the detailed-level model. The detailed-level model contains two sub-level models: the tactical sub-level model for pedestrian route choice and the operational sub-level model for pedestrian physical interactions. The tactical sub-level model is based on Extended Decision Field Theory (EDFT) to represent the psychological preferences of pedestrians with respect to different route choice options during their deliberation process after evaluating current surroundings. At the operational sub-level model, physical interactions among pedestrians and consequent congestions are represented using a Cellular Automata model, in which pedestrians are allowed biased random-walking without back step towards their destination that has been given by the tactical sub-level model. In addition, Dynamic-Data-Driven Application Systems (DDDAS) architecture has been integrated with the proposed multi-scale simulation framework for an abnormality detection and appropriate fidelity selection (between the aggregate level and the detailed level models) during the simulation execution process. Various experiments have been conducted under varying conditions with the scenario of a Chicago Loop area to demonstrate the advantage of the proposed framework, balancing between computational efficiency and model accuracy. In addition to the signalized intersections, pedestrian crossing behavior under unsignalized conditions which has been recognized as a main reason for pedestrian-vehicle crashes has also been analyzed in this dissertation. To this end, an agent-based model is proposed to mimic pedestrian crossing behavior together with drivers' yielding behavior in the midblock crossing scenario. In particular, pedestrian-vehicle interaction is first modeled as a Two-player Pareto game which develops evaluation of strategies from two aspects, delay and risk, for each agent (i.e. pedestrian and driver). The evaluations are then used by Extended Decision Field Theory to mimic decision making of each agent based on his/her aggressiveness and physical capabilities. A base car-following algorithm from NGSIM is employed to represent vehicles' physical movement and execution of drivers' decisions. A midblock segment of a typical arterial in the Tucson area is adopted to illustrate the proposed model, and the model for the considered scenario has been implemented in AnyLogic® simulation software. Using the constructed simulation, experiments have been conducted to analyze different behaviors of pedestrians and drivers and the mutual impact upon each other, i.e. average pedestrian delay resulted from different crossing behaviors (aggressive vs. conservative), and average braking distance which is affected by driving aggressiveness and drivers' awareness of pedestrians. The results look interesting and are believed to be useful for improvement of pedestrians' safety during their midblock crossing. To the best of our knowledge, the proposed multi-scale modeling framework for pedestrians and drivers is one of the first efforts to estimate pedestrian delays in an urban area with adaptive resolution based on demand and accuracy requirement, as well as to address pedestrian-vehicle interactions under unsignalized conditions.
author2 Son, Young-Jun
author_facet Son, Young-Jun
Xi, Hui
author Xi, Hui
author_sort Xi, Hui
title A DDDAS-Based Multi-Scale Framework for Pedestrian Behavior Modeling and Interactions with Drivers
title_short A DDDAS-Based Multi-Scale Framework for Pedestrian Behavior Modeling and Interactions with Drivers
title_full A DDDAS-Based Multi-Scale Framework for Pedestrian Behavior Modeling and Interactions with Drivers
title_fullStr A DDDAS-Based Multi-Scale Framework for Pedestrian Behavior Modeling and Interactions with Drivers
title_full_unstemmed A DDDAS-Based Multi-Scale Framework for Pedestrian Behavior Modeling and Interactions with Drivers
title_sort dddas-based multi-scale framework for pedestrian behavior modeling and interactions with drivers
publisher The University of Arizona.
publishDate 2013
url http://hdl.handle.net/10150/306361
work_keys_str_mv AT xihui adddasbasedmultiscaleframeworkforpedestrianbehaviormodelingandinteractionswithdrivers
AT xihui dddasbasedmultiscaleframeworkforpedestrianbehaviormodelingandinteractionswithdrivers
_version_ 1718106324306231296
spelling ndltd-arizona.edu-oai-arizona.openrepository.com-10150-3063612015-10-23T05:28:42Z A DDDAS-Based Multi-Scale Framework for Pedestrian Behavior Modeling and Interactions with Drivers Xi, Hui Son, Young-Jun Son, Young-Jun Lin, Wei Hua Liu, Jian Weisband, Suzanne P. decision making interaction pedestrian behavior Systems & Industrial Engineering crowd modeling A multi-scale agent-based simulation framework is firstly proposed to analyze pedestrian delays at signalized crosswalks in large urban areas under different conditions. The aggregated-level model runs under normal conditions, where each crosswalk is represented as an agent. Pedestrian counts collected near crosswalks are utilized to derive the binary choice probability from a utility maximization model. The derived probability function is utilized based on the extended Adam's model to estimate an average pedestrian delay with corresponding traffic flow rate and traffic light control at each crosswalk. When abnormality is detected, the detailed-level model with each pedestrian as an agent is running in the affected subareas. Pedestrian decision-making under abnormal conditions, physical movement, and crowd congestion are considered in the detailed-level model. The detailed-level model contains two sub-level models: the tactical sub-level model for pedestrian route choice and the operational sub-level model for pedestrian physical interactions. The tactical sub-level model is based on Extended Decision Field Theory (EDFT) to represent the psychological preferences of pedestrians with respect to different route choice options during their deliberation process after evaluating current surroundings. At the operational sub-level model, physical interactions among pedestrians and consequent congestions are represented using a Cellular Automata model, in which pedestrians are allowed biased random-walking without back step towards their destination that has been given by the tactical sub-level model. In addition, Dynamic-Data-Driven Application Systems (DDDAS) architecture has been integrated with the proposed multi-scale simulation framework for an abnormality detection and appropriate fidelity selection (between the aggregate level and the detailed level models) during the simulation execution process. Various experiments have been conducted under varying conditions with the scenario of a Chicago Loop area to demonstrate the advantage of the proposed framework, balancing between computational efficiency and model accuracy. In addition to the signalized intersections, pedestrian crossing behavior under unsignalized conditions which has been recognized as a main reason for pedestrian-vehicle crashes has also been analyzed in this dissertation. To this end, an agent-based model is proposed to mimic pedestrian crossing behavior together with drivers' yielding behavior in the midblock crossing scenario. In particular, pedestrian-vehicle interaction is first modeled as a Two-player Pareto game which develops evaluation of strategies from two aspects, delay and risk, for each agent (i.e. pedestrian and driver). The evaluations are then used by Extended Decision Field Theory to mimic decision making of each agent based on his/her aggressiveness and physical capabilities. A base car-following algorithm from NGSIM is employed to represent vehicles' physical movement and execution of drivers' decisions. A midblock segment of a typical arterial in the Tucson area is adopted to illustrate the proposed model, and the model for the considered scenario has been implemented in AnyLogic® simulation software. Using the constructed simulation, experiments have been conducted to analyze different behaviors of pedestrians and drivers and the mutual impact upon each other, i.e. average pedestrian delay resulted from different crossing behaviors (aggressive vs. conservative), and average braking distance which is affected by driving aggressiveness and drivers' awareness of pedestrians. The results look interesting and are believed to be useful for improvement of pedestrians' safety during their midblock crossing. To the best of our knowledge, the proposed multi-scale modeling framework for pedestrians and drivers is one of the first efforts to estimate pedestrian delays in an urban area with adaptive resolution based on demand and accuracy requirement, as well as to address pedestrian-vehicle interactions under unsignalized conditions. 2013 text Electronic Dissertation http://hdl.handle.net/10150/306361 en_US Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. The University of Arizona.