Developing Methods for On-site Determination of Unsaturated and Saturated Hydraulic Conductivity above the Water Table

Project Completion Report, OWRT Project No. A-07-ARIZ / Agreement No. 14-34-0001-7005, Project Dates: July 1, 1976 - September 30, 1978 / Acknowledgement: The work upon which this report is based was supported by funds provided by the State of Arizona and the United States Department of Interior, Of...

Full description

Bibliographic Details
Main Authors: Neuman, S. P., Wilson, L. G.
Other Authors: Department of Hydrology and Water Resources
Language:en_US
Published: University of Arizona (Tucson, AZ) 1980
Online Access:http://hdl.handle.net/10150/305430
id ndltd-arizona.edu-oai-arizona.openrepository.com-10150-305430
record_format oai_dc
spelling ndltd-arizona.edu-oai-arizona.openrepository.com-10150-3054302015-10-23T05:28:04Z Developing Methods for On-site Determination of Unsaturated and Saturated Hydraulic Conductivity above the Water Table Neuman, S. P. Wilson, L. G. Department of Hydrology and Water Resources Water Resources Research Center Project Completion Report, OWRT Project No. A-07-ARIZ / Agreement No. 14-34-0001-7005, Project Dates: July 1, 1976 - September 30, 1978 / Acknowledgement: The work upon which this report is based was supported by funds provided by the State of Arizona and the United States Department of Interior, Office of Water Research and Technology, as authorized under the Water Resources Act of 1964. Constant head borehole infiltration tests are widely used for the in situ evaluation of saturated hydraulic conductivities of unsaturated soils above the water table. The formulae employed in analyzing the results of such tests disregard the fact that some of the infiltrating water may flow under unsaturated conditions. Instead, these formulae are based on various approximations of the classical free surface theory which treats the flow region as if it were fully saturated and enclosed within a distinct envelope, the so- called "free surface." A finite element model capable of solving free surface problems is used to examine the mathematical accuracy of the borehole infiltration formulae. The results show that in the hypothetical case where unsaturated flow does not exist, the approximate formulae are reasonably accurate within a practical range of borehole conditions. To see what happens under conditions closer to those actually encountered in the field, the effect of unsaturated flow on borehole infiltration is investigated by means of two different numerical models: A mixed explicit- implicit finite element model, and a mixed explicit-implicit integrated finite difference model. Both of these models give nearly identical results; however, the integrated finite difference model is considerably faster than the finite element model. The relatively low computational efficiency of the finite element scheme is attributed to the large number of operations required in order to reevaluate the conductivity (stiffness) matrix at each iteration in this highly nonlinear saturated -unsaturated flow problem. The saturated -unsaturated analysis demonstrates that the classical free surface approach provides a distorted picture of the flow pattern in the soil. Contrary to what one would expect on the basis of this theory, only a finite region of the soil in the immediate vicinity of the borehole is saturated, whereas a significant percentage of the flow takes place under unsaturated conditions. As a consequence of disregarding unsaturated flow, the available formulae may underestimate the saturated hydraulic conductivity of fine grained soils by a factor of two, three, or more. Our saturated - unsaturated analysis leads to an improved design of borehole infiltration tests and a more accurate method for interpreting the results of such tests. The analysis also shows how one can predict the steady state rate of infiltration as well as the saturated hydraulic conductivity from data collected during the early transient period of the test. 1980-03 http://hdl.handle.net/10150/305430 en_US University of Arizona (Tucson, AZ) Water Resources Research Center. The University of Arizona.
collection NDLTD
language en_US
sources NDLTD
description Project Completion Report, OWRT Project No. A-07-ARIZ / Agreement No. 14-34-0001-7005, Project Dates: July 1, 1976 - September 30, 1978 / Acknowledgement: The work upon which this report is based was supported by funds provided by the State of Arizona and the United States Department of Interior, Office of Water Research and Technology, as authorized under the Water Resources Act of 1964. === Constant head borehole infiltration tests are widely used for the in situ evaluation of saturated hydraulic conductivities of unsaturated soils above the water table. The formulae employed in analyzing the results of such tests disregard the fact that some of the infiltrating water may flow under unsaturated conditions. Instead, these formulae are based on various approximations of the classical free surface theory which treats the flow region as if it were fully saturated and enclosed within a distinct envelope, the so- called "free surface." A finite element model capable of solving free surface problems is used to examine the mathematical accuracy of the borehole infiltration formulae. The results show that in the hypothetical case where unsaturated flow does not exist, the approximate formulae are reasonably accurate within a practical range of borehole conditions. To see what happens under conditions closer to those actually encountered in the field, the effect of unsaturated flow on borehole infiltration is investigated by means of two different numerical models: A mixed explicit- implicit finite element model, and a mixed explicit-implicit integrated finite difference model. Both of these models give nearly identical results; however, the integrated finite difference model is considerably faster than the finite element model. The relatively low computational efficiency of the finite element scheme is attributed to the large number of operations required in order to reevaluate the conductivity (stiffness) matrix at each iteration in this highly nonlinear saturated -unsaturated flow problem. The saturated -unsaturated analysis demonstrates that the classical free surface approach provides a distorted picture of the flow pattern in the soil. Contrary to what one would expect on the basis of this theory, only a finite region of the soil in the immediate vicinity of the borehole is saturated, whereas a significant percentage of the flow takes place under unsaturated conditions. As a consequence of disregarding unsaturated flow, the available formulae may underestimate the saturated hydraulic conductivity of fine grained soils by a factor of two, three, or more. Our saturated - unsaturated analysis leads to an improved design of borehole infiltration tests and a more accurate method for interpreting the results of such tests. The analysis also shows how one can predict the steady state rate of infiltration as well as the saturated hydraulic conductivity from data collected during the early transient period of the test.
author2 Department of Hydrology and Water Resources
author_facet Department of Hydrology and Water Resources
Neuman, S. P.
Wilson, L. G.
author Neuman, S. P.
Wilson, L. G.
spellingShingle Neuman, S. P.
Wilson, L. G.
Developing Methods for On-site Determination of Unsaturated and Saturated Hydraulic Conductivity above the Water Table
author_sort Neuman, S. P.
title Developing Methods for On-site Determination of Unsaturated and Saturated Hydraulic Conductivity above the Water Table
title_short Developing Methods for On-site Determination of Unsaturated and Saturated Hydraulic Conductivity above the Water Table
title_full Developing Methods for On-site Determination of Unsaturated and Saturated Hydraulic Conductivity above the Water Table
title_fullStr Developing Methods for On-site Determination of Unsaturated and Saturated Hydraulic Conductivity above the Water Table
title_full_unstemmed Developing Methods for On-site Determination of Unsaturated and Saturated Hydraulic Conductivity above the Water Table
title_sort developing methods for on-site determination of unsaturated and saturated hydraulic conductivity above the water table
publisher University of Arizona (Tucson, AZ)
publishDate 1980
url http://hdl.handle.net/10150/305430
work_keys_str_mv AT neumansp developingmethodsforonsitedeterminationofunsaturatedandsaturatedhydraulicconductivityabovethewatertable
AT wilsonlg developingmethodsforonsitedeterminationofunsaturatedandsaturatedhydraulicconductivityabovethewatertable
_version_ 1718106184829894656