Summary: | The cell's nucleus contains DNA in the form of chromosomes, which are the hereditary content of the organism. The proper transmission of DNA from one generation to the next is critical. Along with this crucial process, cells will also need to transcribe the DNA, silence certain genes (or whole chromosomes) during development and regulate other chromosome dynamics that are still being identified. The molecular components responsible for these processes are starting to be identified. However, the regulation of these components and how they interact with each other is not well understood.The condensin complex is one component that has been identified to play a role in chromosome dynamics. Activity of the complex has been studied in vitro but in vivo activity has been difficult to measure. Similarly, understanding the regulation of the complex has been difficult given the lack of assays and that the complex is essential for cell survival. In this dissertation, I have identified and characterized a regulator of condensin II function using Drosophila melanogaster. The chromo-domain protein Mrg15 interacts with condensin II to inhibit homologous chromosome interactions.Lastly, I look at the role of condensin II in female meiosis. Meiosis involves pairing and subsequent segregation of homologous chromosomes. The process of the initial pairing has remained elusive but specialized structures have evolved to maintain this pairing. Condensin II can antagonize a basal level of homologous pairing and also removes the specialized structure that pair meiotic chromosomes. This dissertation will add to the growing knowledge of the regulation of the condensin II complex and its role in female meiosis.
|