Response of leafy winter vegetables to water and nitrogen inputs under subsurface trickle irrigation.

Arizona is ranked third in the nation in fresh vegetable production, however, overfertilization and overirrigation have been common practices used to maintain adequate yields and crop quality. Concern for groundwater contamination, water availability and costs have made it necessary to increase wate...

Full description

Bibliographic Details
Main Author: Rodríguez-Casas, Julio.
Other Authors: Thompson, Thomas L.
Language:en
Published: The University of Arizona. 1994
Online Access:http://hdl.handle.net/10150/186683
id ndltd-arizona.edu-oai-arizona.openrepository.com-10150-186683
record_format oai_dc
spelling ndltd-arizona.edu-oai-arizona.openrepository.com-10150-1866832015-10-23T04:33:15Z Response of leafy winter vegetables to water and nitrogen inputs under subsurface trickle irrigation. Rodríguez-Casas, Julio. Thompson, Thomas L. Tucker, Thomas C. Dutt, Gordon R. Slack, Donald C. Fangmeier, Delmar D. Arizona is ranked third in the nation in fresh vegetable production, however, overfertilization and overirrigation have been common practices used to maintain adequate yields and crop quality. Concern for groundwater contamination, water availability and costs have made it necessary to increase water and nitrogen (N) use efficiency. The objectives of this research were: 1. optimize water and N inputs applied through a subsurface trickle irrigation system to leaf lettuce, spinach and collards. 2. evaluate water and N effects on midrib nitrate (NO₃-N) concentration as a tool for monitoring plant N status throughout the growing season. A field experiment was conducted during fall-winter 1992-93 at the University of Arizona Maricopa Agricultural Center, Maricopa, AZ. A factorial design with three target soil water potentials and four N levels was used to determine response surfaces for yield, net return, and water and N use efficiency. Tensiometers were used as an aid to schedule irrigations, and midrib NO₃-N concentrations at critical growth stages were used to monitor N status. Spinach and collard midrib N03-N concentrations showed a high response to N rates throughout the growing season. Leaf lettuce midrib NO₃-N was responsive to treatments at the beginning and end of its growing season. Some yield and efficiency parameters were significantly affected by the irrigation treatments with an effect generally negative. Nitrogen had tremendous influence on them, perhaps due to the wet seasonal conditions which may have promoted nitrate leaching and denitrification. For leaf lettuce, maximum fresh weight was estimated to be 60861 kg ha⁻¹ at -4.3 kPa soil water potential and 367 kg N ha⁻¹. Maximum net return was estimated to be $18,089 ha⁻¹ when average soil water potential was -6.0 kPa and applied N was 355 kg N ha⁻¹. Estimated maximum nitrogen use efficiency (NUE) was 0.8 at -10.3 kPa soil water potential, and 2 kg N ha⁻¹. It was not possible to determine a maximum value for applied water use efficiency (A WUE). For spinach, maximum yield was estimated to be 33948 kg ha⁻¹ at -8.0 kPa soil water potential and 400 kg N ha⁻¹. Estimated net return was $18,573 ha⁻¹ when soil water potential and applied N rate were -8.2 kPa and 398 kg N ha⁻¹ respectively. For NUE, the estimated maximum was 0.7 at -11.2 kPa and -42 kg N ha⁻¹. It was not possible to determine a maximum for A WUE. For collards, 49466 kg ha-1 was the estimated maximum yield when soil water potential was -9.0 kPa and applied N was 396 kg N ha⁻¹. Maximum net return was estimated to be $15,561 ha⁻¹ at -9.3 kPa and 394 kg N ha⁻¹. It was not possible to determine maximums for A WUE or NUE. The relationship between midrib NO₃-N concentrations and chlorophyll meter readings was poor, and prediction of plant NO₃-N status was not as reliable as expected. 1994 text Dissertation-Reproduction (electronic) http://hdl.handle.net/10150/186683 9426315 en Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. The University of Arizona.
collection NDLTD
language en
sources NDLTD
description Arizona is ranked third in the nation in fresh vegetable production, however, overfertilization and overirrigation have been common practices used to maintain adequate yields and crop quality. Concern for groundwater contamination, water availability and costs have made it necessary to increase water and nitrogen (N) use efficiency. The objectives of this research were: 1. optimize water and N inputs applied through a subsurface trickle irrigation system to leaf lettuce, spinach and collards. 2. evaluate water and N effects on midrib nitrate (NO₃-N) concentration as a tool for monitoring plant N status throughout the growing season. A field experiment was conducted during fall-winter 1992-93 at the University of Arizona Maricopa Agricultural Center, Maricopa, AZ. A factorial design with three target soil water potentials and four N levels was used to determine response surfaces for yield, net return, and water and N use efficiency. Tensiometers were used as an aid to schedule irrigations, and midrib NO₃-N concentrations at critical growth stages were used to monitor N status. Spinach and collard midrib N03-N concentrations showed a high response to N rates throughout the growing season. Leaf lettuce midrib NO₃-N was responsive to treatments at the beginning and end of its growing season. Some yield and efficiency parameters were significantly affected by the irrigation treatments with an effect generally negative. Nitrogen had tremendous influence on them, perhaps due to the wet seasonal conditions which may have promoted nitrate leaching and denitrification. For leaf lettuce, maximum fresh weight was estimated to be 60861 kg ha⁻¹ at -4.3 kPa soil water potential and 367 kg N ha⁻¹. Maximum net return was estimated to be $18,089 ha⁻¹ when average soil water potential was -6.0 kPa and applied N was 355 kg N ha⁻¹. Estimated maximum nitrogen use efficiency (NUE) was 0.8 at -10.3 kPa soil water potential, and 2 kg N ha⁻¹. It was not possible to determine a maximum value for applied water use efficiency (A WUE). For spinach, maximum yield was estimated to be 33948 kg ha⁻¹ at -8.0 kPa soil water potential and 400 kg N ha⁻¹. Estimated net return was $18,573 ha⁻¹ when soil water potential and applied N rate were -8.2 kPa and 398 kg N ha⁻¹ respectively. For NUE, the estimated maximum was 0.7 at -11.2 kPa and -42 kg N ha⁻¹. It was not possible to determine a maximum for A WUE. For collards, 49466 kg ha-1 was the estimated maximum yield when soil water potential was -9.0 kPa and applied N was 396 kg N ha⁻¹. Maximum net return was estimated to be $15,561 ha⁻¹ at -9.3 kPa and 394 kg N ha⁻¹. It was not possible to determine maximums for A WUE or NUE. The relationship between midrib NO₃-N concentrations and chlorophyll meter readings was poor, and prediction of plant NO₃-N status was not as reliable as expected.
author2 Thompson, Thomas L.
author_facet Thompson, Thomas L.
Rodríguez-Casas, Julio.
author Rodríguez-Casas, Julio.
spellingShingle Rodríguez-Casas, Julio.
Response of leafy winter vegetables to water and nitrogen inputs under subsurface trickle irrigation.
author_sort Rodríguez-Casas, Julio.
title Response of leafy winter vegetables to water and nitrogen inputs under subsurface trickle irrigation.
title_short Response of leafy winter vegetables to water and nitrogen inputs under subsurface trickle irrigation.
title_full Response of leafy winter vegetables to water and nitrogen inputs under subsurface trickle irrigation.
title_fullStr Response of leafy winter vegetables to water and nitrogen inputs under subsurface trickle irrigation.
title_full_unstemmed Response of leafy winter vegetables to water and nitrogen inputs under subsurface trickle irrigation.
title_sort response of leafy winter vegetables to water and nitrogen inputs under subsurface trickle irrigation.
publisher The University of Arizona.
publishDate 1994
url http://hdl.handle.net/10150/186683
work_keys_str_mv AT rodriguezcasasjulio responseofleafywintervegetablestowaterandnitrogeninputsundersubsurfacetrickleirrigation
_version_ 1718097963150999552