A shallow parser based on closed-class words to capture relations in biomedical text

Artificial Intelligence Lab, Department of MIS, University of Arizona === Natural language processing for biomedical text currently focuses mostly on entity and relation extraction. These entities and relations are usually pre-specified entities, e.g., proteins, and pre-specified relations, e.g., i...

Full description

Bibliographic Details
Main Authors: Leroy, Gondy, Chen, Hsinchun, Martinez, Jesse D.
Language:en
Published: Elsevier 2003
Subjects:
Online Access:http://hdl.handle.net/10150/105844
Description
Summary:Artificial Intelligence Lab, Department of MIS, University of Arizona === Natural language processing for biomedical text currently focuses mostly on entity and relation extraction. These entities and relations are usually pre-specified entities, e.g., proteins, and pre-specified relations, e.g., inhibit relations. A shallow parser that captures the relations between noun phrases automatically from free text has been developed and evaluated. It uses heuristics and a noun phraser to capture entities of interest in the text. Cascaded finite state automata structure the relations between individual entities. The automata are based on closed-class English words and model generic relations not limited to specific words. The parser also recognizes coordinating conjunctions and captures negation in text, a feature usually ignored by others. Three cancer researchers evaluated 330 relations extracted from 26 abstracts of interest to them. There were 296 relations correctly extracted from the abstracts resulting in 90% precision of the relations and an average of 11 correct relations per abstract.