Enhancing the Photovoltaic Performance of P3HT/PDIB Silsesquioxane Donor-Acceptor System Using Spray Deposition Fabrication Technique

In the past few years, the solution-processed organic based solar cells gained more importance by meeting the demands for cost effective photovoltaic devices. To date, the focus of the organic photovoltaic devices has been on the optimization of the processing the materials to improve photo conversi...

Full description

Bibliographic Details
Main Author: Manda, Venkata Ramana
Format: Others
Published: TopSCHOLAR® 2014
Subjects:
Online Access:http://digitalcommons.wku.edu/theses/1336
http://digitalcommons.wku.edu/cgi/viewcontent.cgi?article=2339&context=theses
Description
Summary:In the past few years, the solution-processed organic based solar cells gained more importance by meeting the demands for cost effective photovoltaic devices. To date, the focus of the organic photovoltaic devices has been on the optimization of the processing the materials to improve photo conversion efficiency and also by modifying the active components of the organic materials. Recently, it has been recognized that the deposition techniques also plays a major role in enhancing the power conversion efficiencies. Currently, though the most common deposition technique for organic solar cells is spin coating, which does not allow scaling up of the large device area. As an alternative method, a simple airbrush spray deposition technique has been developed to fabricate the test devices. The film thickness of the layers was characterized under scanning electron microscope. Devices with different thickness (1000 nm, 500 nm, 240 nm) of poly(3,4-ethylenedioxythipohene) polystyrene sulfonate (PEDOT.PSS) and active layers are prepared and their photovoltaic performances have been evaluated and compared by plotting the IV curves with respect to each thickness. Maintaining the distance between the substrate and the airbrush nozzle the thickness of the layers was controlled. From the results, we found that the test devices with 500 nm thickness of PEDOT.PSS and active layers shows the best device performance with highest current density of 3.97 mA/cm2, open circuit voltage of 1.3 V and power conversion efficiency of 2.34%. As a control experiment, devices were also developed using the standard poly(3- hexylthiophene-2,5-diyl):phenyl-C61-butyric acid methyl ester (P3HT:PCBM) system, but the power conversion efficiencies of these devices were not promising with respect to the literature results. Future studies of this project will focus on improving the power conversion efficiency of poly(3-hexylthiophene-2,5-diyl)/perylenediimide bridged system (P3HT/PDIB) by developing a new device architecture called “tandem solar cells” which consists of multiple layers of different donor and acceptor blends with inorganic transition metal oxides such as zinc oxide and molybdenum oxides.