An Integrated Voltage Optimization Approach For Industrial Loads

Although Voltage Varying (VV) strategies like Conservation Voltage Reduction (CVR) are widely used by utilities to reduce the overall energy consumption and peak power demand of distribution feeders, it is aberrant among industrial customers. This research proposes a Voltage Varying (VV) strategy fo...

Full description

Bibliographic Details
Main Author: Madhavan, Adarsh
Language:en
Published: 2013
Subjects:
Online Access:http://hdl.handle.net/10012/7554
id ndltd-WATERLOO-oai-uwspace.uwaterloo.ca-10012-7554
record_format oai_dc
spelling ndltd-WATERLOO-oai-uwspace.uwaterloo.ca-10012-75542013-05-23T04:29:43ZMadhavan, Adarsh2013-05-22T20:37:33Z2013-05-22T20:37:33Z2013-05-22T20:37:33Z2013http://hdl.handle.net/10012/7554Although Voltage Varying (VV) strategies like Conservation Voltage Reduction (CVR) are widely used by utilities to reduce the overall energy consumption and peak power demand of distribution feeders, it is aberrant among industrial customers. This research proposes a Voltage Varying (VV) strategy for industrial customers that takes into account their complex characteristics and unique set of constraints. Unlike VV strategies for Local Distribution Companies (LDC), those for an industrial customers are far more complex, and require specific c load modelling and process estimation to infer the optimal operating voltage for the industrial load. The proposed VV technique referred to as Voltage Optimization (VO), is a generic and comprehensive framework that seeks to reduce the energy consumption of the industrial load vis-~a-vis the bus voltage. It utilizes a Neural Network (NN) model of the industrial load, trained using historical operating data, to estimate the real power consumption of the load, based on the bus voltage and overall plant process. This load model, is incorporated into the proposed VO model, whose objective is the minimization of the energy drawn from the substation and the switching operations of Load Tap Changers (LTC). The proposed VO framework is tested on load models developed using simulated and real data. Results suggest that the proposed technique can be successfully implemented by industrial customers or plant operators to improve their energy savings, in comparison to existing VV techniques.enVoltage optimizationindustrial loadsAn Integrated Voltage Optimization Approach For Industrial LoadsThesis or DissertationElectrical and Computer EngineeringMaster of Applied ScienceElectrical and Computer Engineering
collection NDLTD
language en
sources NDLTD
topic Voltage optimization
industrial loads
Electrical and Computer Engineering
spellingShingle Voltage optimization
industrial loads
Electrical and Computer Engineering
Madhavan, Adarsh
An Integrated Voltage Optimization Approach For Industrial Loads
description Although Voltage Varying (VV) strategies like Conservation Voltage Reduction (CVR) are widely used by utilities to reduce the overall energy consumption and peak power demand of distribution feeders, it is aberrant among industrial customers. This research proposes a Voltage Varying (VV) strategy for industrial customers that takes into account their complex characteristics and unique set of constraints. Unlike VV strategies for Local Distribution Companies (LDC), those for an industrial customers are far more complex, and require specific c load modelling and process estimation to infer the optimal operating voltage for the industrial load. The proposed VV technique referred to as Voltage Optimization (VO), is a generic and comprehensive framework that seeks to reduce the energy consumption of the industrial load vis-~a-vis the bus voltage. It utilizes a Neural Network (NN) model of the industrial load, trained using historical operating data, to estimate the real power consumption of the load, based on the bus voltage and overall plant process. This load model, is incorporated into the proposed VO model, whose objective is the minimization of the energy drawn from the substation and the switching operations of Load Tap Changers (LTC). The proposed VO framework is tested on load models developed using simulated and real data. Results suggest that the proposed technique can be successfully implemented by industrial customers or plant operators to improve their energy savings, in comparison to existing VV techniques.
author Madhavan, Adarsh
author_facet Madhavan, Adarsh
author_sort Madhavan, Adarsh
title An Integrated Voltage Optimization Approach For Industrial Loads
title_short An Integrated Voltage Optimization Approach For Industrial Loads
title_full An Integrated Voltage Optimization Approach For Industrial Loads
title_fullStr An Integrated Voltage Optimization Approach For Industrial Loads
title_full_unstemmed An Integrated Voltage Optimization Approach For Industrial Loads
title_sort integrated voltage optimization approach for industrial loads
publishDate 2013
url http://hdl.handle.net/10012/7554
work_keys_str_mv AT madhavanadarsh anintegratedvoltageoptimizationapproachforindustrialloads
AT madhavanadarsh integratedvoltageoptimizationapproachforindustrialloads
_version_ 1716586274984296448