Tracerory - Dynamic Tracematches and Unread Memory Detection for C/C++

Dynamic binary translation allows us to analyze a program during execution without the need for a compiler or the program's source code. In this work, we present two applications of dynamic binary translation: tracematches and unread memory detection. Libraries are ubiquitous in modern softwar...

Full description

Bibliographic Details
Main Author: Eyolfson, Jonathan
Language:en
Published: 2011
Subjects:
Online Access:http://hdl.handle.net/10012/6206
Description
Summary:Dynamic binary translation allows us to analyze a program during execution without the need for a compiler or the program's source code. In this work, we present two applications of dynamic binary translation: tracematches and unread memory detection. Libraries are ubiquitous in modern software development. Each library requires that its clients follow certain conventions, depending on the domain of the library. Tracematches are a particularly expressive notation for specifying library usage conventions, but have only been implemented on top of Java. In this work, we leverage dynamic binary translation to enable the use of tracematches on executables, particularly for compiled C/C++ programs. The presence of memory that is never read, or memory writes that are never read during execution is wasteful, and may be also be indicative of bugs. In addition to tracematches, we present an unread memory detector. We built this detector using dynamic binary translation. We have implemented a tool which monitors tracematches on top of the Pin framework along with unread memory. We describe the operation of our tool using a series of motivating examples and then present our overall monitoring approach. Finally, we include benchmarks showing the overhead of our tool on 4 open source projects and report qualitative results.