The Normal Distribution of ω(φ(m)) in Function Fields
Let ω(m) be the number of distinct prime factors of m. A celebrated theorem of Erdös-Kac states that the quantity (ω(m)-loglog m)/√(loglog m) distributes normally. Let φ(m) be Euler's φ-function. Erdös and Pomerance proved that the quantity(ω(φ(m)-(1/2)(loglog m)^2)\((1/√(3)(loglog m)^(3/2))...
Main Author: | |
---|---|
Language: | en |
Published: |
2008
|
Subjects: | |
Online Access: | http://hdl.handle.net/10012/3567 |
id |
ndltd-WATERLOO-oai-uwspace.uwaterloo.ca-10012-3567 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-WATERLOO-oai-uwspace.uwaterloo.ca-10012-35672013-01-08T18:50:59ZLi, Li2008-01-28T20:39:15Z2008-01-28T20:39:15Z2008-01-28T20:39:15Z2007http://hdl.handle.net/10012/3567Let ω(m) be the number of distinct prime factors of m. A celebrated theorem of Erdös-Kac states that the quantity (ω(m)-loglog m)/√(loglog m) distributes normally. Let φ(m) be Euler's φ-function. Erdös and Pomerance proved that the quantity(ω(φ(m)-(1/2)(loglog m)^2)\((1/√(3)(loglog m)^(3/2)) also distributes normally. In this thesis, we prove these two results. We also prove a function field analogue of the Erdös-Pomerance Theorem in the setting of the Carlitz module.enNumber TheoryThe Normal Distribution of ω(φ(m)) in Function FieldsThesis or DissertationPure MathematicsMaster of MathematicsPure Mathematics |
collection |
NDLTD |
language |
en |
sources |
NDLTD |
topic |
Number Theory Pure Mathematics |
spellingShingle |
Number Theory Pure Mathematics Li, Li The Normal Distribution of ω(φ(m)) in Function Fields |
description |
Let ω(m) be the number of distinct prime factors of m. A
celebrated theorem of Erdös-Kac states that the quantity
(ω(m)-loglog m)/√(loglog m) distributes
normally. Let φ(m) be Euler's φ-function. Erdös and
Pomerance proved that the
quantity(ω(φ(m)-(1/2)(loglog
m)^2)\((1/√(3)(loglog m)^(3/2)) also distributes
normally. In this thesis, we prove these two results. We also
prove a function field analogue of the Erdös-Pomerance Theorem
in the setting of the Carlitz module. |
author |
Li, Li |
author_facet |
Li, Li |
author_sort |
Li, Li |
title |
The Normal Distribution of ω(φ(m)) in Function Fields |
title_short |
The Normal Distribution of ω(φ(m)) in Function Fields |
title_full |
The Normal Distribution of ω(φ(m)) in Function Fields |
title_fullStr |
The Normal Distribution of ω(φ(m)) in Function Fields |
title_full_unstemmed |
The Normal Distribution of ω(φ(m)) in Function Fields |
title_sort |
normal distribution of ω(φ(m)) in function fields |
publishDate |
2008 |
url |
http://hdl.handle.net/10012/3567 |
work_keys_str_mv |
AT lili thenormaldistributionofōphminfunctionfields AT lili normaldistributionofōphminfunctionfields |
_version_ |
1716573075116392448 |