A fogging scrubber to treat diesel exhaust: field testing and a mechanistic model

Diesel particulate matter (DPM) is comprised of two main fractions, organic carbon (OC) and elemental carbon (EC). DPM is the solid portion of diesel exhaust and particles are submicron in size typically ranging from 10 to 1000 nanometers. DPM is a known respirable hazard and occupational exposure c...

Full description

Bibliographic Details
Main Author: Tabor, Joseph Edward
Other Authors: Mining Engineering
Format: Others
Published: Virginia Tech 2020
Subjects:
DPM
fog
Online Access:http://hdl.handle.net/10919/99443
id ndltd-VTETD-oai-vtechworks.lib.vt.edu-10919-99443
record_format oai_dc
collection NDLTD
format Others
sources NDLTD
topic Diesel Particulate Matter
DPM
fog
diesel exhaust
scrubber
underground mining
occupational health
mine ventilation
spellingShingle Diesel Particulate Matter
DPM
fog
diesel exhaust
scrubber
underground mining
occupational health
mine ventilation
Tabor, Joseph Edward
A fogging scrubber to treat diesel exhaust: field testing and a mechanistic model
description Diesel particulate matter (DPM) is comprised of two main fractions, organic carbon (OC) and elemental carbon (EC). DPM is the solid portion of diesel exhaust and particles are submicron in size typically ranging from 10 to 1000 nanometers. DPM is a known respirable hazard and occupational exposure can lead to negative health effects. These effects can range from irritation of the eyes, nose, and throat to more serious respirable and cardiovascular diseases. Due to the use of diesel powered equipment in confined airways, underground mine environments present an increased risk and underground mine works can be chronically overexposed. Current engineering controls used to mitigate DPM exposure include cleaner fuels, regular engine maintenance, ventilation controls, and enclosed cabs on vehicles. However even with these controls in place, workers can still be overexposed. The author's research group has previously tested the efficacy of a novel, fog-based scrubber treatment for removing DPM from the air, in a laboratory setting. It was found that the fog treatment improved DPM removal by approximately 45% by number density compared to the control trial (fog off). The previous work stated thermal coagulation between the fog drops and the DPM, followed by gravitational settling of the drops to be the likely mechanisms responsible for the DPM removal. The current work investigated the efficacy of the fog treatment on a larger scale in an underground mine environment, by using a fogging scrubber to treat the entire exhaust stream from a diesel vehicle. A total of 11 field tests were conducted. Based on measurements of nanoparticle number concentration at the inlet and outlet of the scrubber, the fog treatment in the current work showed an average improvement in total DPM removal of approximately 55% compared to the control (fog off) condition. It was found that the treatment more effectively removed smaller DPM sizes, removing an average of 84 to 89% of the DPM in the 11.5, 15.4, and 20.5 nanometer size bins and removing 24 to 30% of the DPM in the 88.6, 115.5, and 154 nanometer size bins. These observations are consistent with expectations since the rate of coagulation between the DPM and fog drops should be greater for smaller diameters. Further analysis of the DPM removal was aided by the development of a mechanistic model of the fogging scrubber. The model uses the inlet data from the experimental tests as input parameters, and it outputs the outlet concentration of DPM for comparison to the experimental outlet data. Results provided support for the notion that DPM removal relies on DPM-fog drop coagulation, and subsequent removal of the DPM-laden drops as opposed to DPM removal by diffusion or inertial impaction of DPM directly to the walls. The model results suggest that inertial impaction of these drops to the scrubber walls is likely much more important than gravitational settling. Moreover, the ribbed geometry of the tubing used for the scrubber apparatus tested here appears to greatly enhance inertial impaction (via enhancement of depositional velocity) versus smooth-walled tubing. This is consistent with previous research that shows particle deposition in tubes with internally ribbed or wavy structures is enhanced compared to deposition in tubes with smooth walls. === Master of Science === Diesel particulate matter (DPM) describes the solid portion of diesel exhaust. These particles are in the nanometer size range (10-1000nm) and can penetrate deep within the lungs presenting a serious health hazard. Because of the use of diesel powered equipment in confined spaces, DPM presents an occupational hazard for underground mine workers. Even with the use of cleaner fuels, regular engine maintenance, proper ventilation, and enclosed vehicle cabs, workers can still be over exposed. Previous work has shown that a water fog treatment can help to remove DPM from the air in a laboratory setting. This removal is due to the DPM particles attaching to the drops, followed by the drops settling out of the air due to gravity or impacting the walls of a tube. To explore a full scale exhaust treatment, a fogging scrubber was built using a fogger and a long tube, and was tested in an underground mine on vehicle exhaust. Experimental results showed that the fog treatment was effective at removing DPM from the exhaust. On average, the fog improved DPM removal by about 55% compared to when the treatment was not employed (fog off). To better understand the mechanisms responsible for DPM removal in the scrubber, a computer model was generated. The model uses the inlet parameters from the field tests, such as inlet DPM and fog concentration and tube geometry, and predicts the scrubber outlet DPM concentration. The model results suggest that the primary way that DPM is removed from the system is by combining with fog drops, which then hit the scrubber tube walls. This effect is probably enhanced by the ribbed structure of the scrubber tubing used here, which may be important for practical applications.
author2 Mining Engineering
author_facet Mining Engineering
Tabor, Joseph Edward
author Tabor, Joseph Edward
author_sort Tabor, Joseph Edward
title A fogging scrubber to treat diesel exhaust: field testing and a mechanistic model
title_short A fogging scrubber to treat diesel exhaust: field testing and a mechanistic model
title_full A fogging scrubber to treat diesel exhaust: field testing and a mechanistic model
title_fullStr A fogging scrubber to treat diesel exhaust: field testing and a mechanistic model
title_full_unstemmed A fogging scrubber to treat diesel exhaust: field testing and a mechanistic model
title_sort fogging scrubber to treat diesel exhaust: field testing and a mechanistic model
publisher Virginia Tech
publishDate 2020
url http://hdl.handle.net/10919/99443
work_keys_str_mv AT taborjosephedward afoggingscrubbertotreatdieselexhaustfieldtestingandamechanisticmodel
AT taborjosephedward foggingscrubbertotreatdieselexhaustfieldtestingandamechanisticmodel
_version_ 1719342537281372160
spelling ndltd-VTETD-oai-vtechworks.lib.vt.edu-10919-994432020-09-26T05:37:10Z A fogging scrubber to treat diesel exhaust: field testing and a mechanistic model Tabor, Joseph Edward Mining Engineering Sarver, Emily Allyn Luxbacher, Kramer Davis Saylor, John R. Diesel Particulate Matter DPM fog diesel exhaust scrubber underground mining occupational health mine ventilation Diesel particulate matter (DPM) is comprised of two main fractions, organic carbon (OC) and elemental carbon (EC). DPM is the solid portion of diesel exhaust and particles are submicron in size typically ranging from 10 to 1000 nanometers. DPM is a known respirable hazard and occupational exposure can lead to negative health effects. These effects can range from irritation of the eyes, nose, and throat to more serious respirable and cardiovascular diseases. Due to the use of diesel powered equipment in confined airways, underground mine environments present an increased risk and underground mine works can be chronically overexposed. Current engineering controls used to mitigate DPM exposure include cleaner fuels, regular engine maintenance, ventilation controls, and enclosed cabs on vehicles. However even with these controls in place, workers can still be overexposed. The author's research group has previously tested the efficacy of a novel, fog-based scrubber treatment for removing DPM from the air, in a laboratory setting. It was found that the fog treatment improved DPM removal by approximately 45% by number density compared to the control trial (fog off). The previous work stated thermal coagulation between the fog drops and the DPM, followed by gravitational settling of the drops to be the likely mechanisms responsible for the DPM removal. The current work investigated the efficacy of the fog treatment on a larger scale in an underground mine environment, by using a fogging scrubber to treat the entire exhaust stream from a diesel vehicle. A total of 11 field tests were conducted. Based on measurements of nanoparticle number concentration at the inlet and outlet of the scrubber, the fog treatment in the current work showed an average improvement in total DPM removal of approximately 55% compared to the control (fog off) condition. It was found that the treatment more effectively removed smaller DPM sizes, removing an average of 84 to 89% of the DPM in the 11.5, 15.4, and 20.5 nanometer size bins and removing 24 to 30% of the DPM in the 88.6, 115.5, and 154 nanometer size bins. These observations are consistent with expectations since the rate of coagulation between the DPM and fog drops should be greater for smaller diameters. Further analysis of the DPM removal was aided by the development of a mechanistic model of the fogging scrubber. The model uses the inlet data from the experimental tests as input parameters, and it outputs the outlet concentration of DPM for comparison to the experimental outlet data. Results provided support for the notion that DPM removal relies on DPM-fog drop coagulation, and subsequent removal of the DPM-laden drops as opposed to DPM removal by diffusion or inertial impaction of DPM directly to the walls. The model results suggest that inertial impaction of these drops to the scrubber walls is likely much more important than gravitational settling. Moreover, the ribbed geometry of the tubing used for the scrubber apparatus tested here appears to greatly enhance inertial impaction (via enhancement of depositional velocity) versus smooth-walled tubing. This is consistent with previous research that shows particle deposition in tubes with internally ribbed or wavy structures is enhanced compared to deposition in tubes with smooth walls. Master of Science Diesel particulate matter (DPM) describes the solid portion of diesel exhaust. These particles are in the nanometer size range (10-1000nm) and can penetrate deep within the lungs presenting a serious health hazard. Because of the use of diesel powered equipment in confined spaces, DPM presents an occupational hazard for underground mine workers. Even with the use of cleaner fuels, regular engine maintenance, proper ventilation, and enclosed vehicle cabs, workers can still be over exposed. Previous work has shown that a water fog treatment can help to remove DPM from the air in a laboratory setting. This removal is due to the DPM particles attaching to the drops, followed by the drops settling out of the air due to gravity or impacting the walls of a tube. To explore a full scale exhaust treatment, a fogging scrubber was built using a fogger and a long tube, and was tested in an underground mine on vehicle exhaust. Experimental results showed that the fog treatment was effective at removing DPM from the exhaust. On average, the fog improved DPM removal by about 55% compared to when the treatment was not employed (fog off). To better understand the mechanisms responsible for DPM removal in the scrubber, a computer model was generated. The model uses the inlet parameters from the field tests, such as inlet DPM and fog concentration and tube geometry, and predicts the scrubber outlet DPM concentration. The model results suggest that the primary way that DPM is removed from the system is by combining with fog drops, which then hit the scrubber tube walls. This effect is probably enhanced by the ribbed structure of the scrubber tubing used here, which may be important for practical applications. 2020-07-28T08:00:24Z 2020-07-28T08:00:24Z 2020-07-27 Thesis vt_gsexam:26979 http://hdl.handle.net/10919/99443 In Copyright http://rightsstatements.org/vocab/InC/1.0/ ETD application/pdf Virginia Tech