Tools and Techniques for Evaluating Reliability Trade-offs for Nano-Architectures

It is expected that nano-scale devices and interconnections will introduce unprecedented level of defects in the substrates, and architectural designs need to accommodate the uncertainty inherent at such scales. This consideration motivates the search for new architectural paradigms based on redunda...

Full description

Bibliographic Details
Main Author: Bhaduri, Debayan
Other Authors: Electrical and Computer Engineering
Format: Others
Published: Virginia Tech 2011
Subjects:
TMR
Online Access:http://hdl.handle.net/10919/9918
http://scholar.lib.vt.edu/theses/available/etd-05122004-121332
Description
Summary:It is expected that nano-scale devices and interconnections will introduce unprecedented level of defects in the substrates, and architectural designs need to accommodate the uncertainty inherent at such scales. This consideration motivates the search for new architectural paradigms based on redundancy based defect-tolerant designs. However, redundancy is not always a solution to the reliability problem, and often too much or too little redundancy may cause degradation in reliability. The key challenge is in determining the granularity at which defect tolerance is designed, and the level of redundancy to achieve a specific level of reliability. Analytical probabilistic models to evaluate such reliability-redundancy trade-offs are error prone and cumbersome, and do not scalewell for complex networks of gates. In this thesiswe develop different tools and techniques that can evaluate the reliability measures of combinational circuits, and can be used to analyze reliability-redundancy trade-offs for different defect-tolerant architectural configurations. In particular, we have developed two tools, one of which is based on probabilistic model checking and is named NANOPRISM, and another MATLAB based tool called NANOLAB. We also illustrate the effectiveness of our reliability analysis tools by pointing out certain anomalies which are counter-intuitive but can be easily discovered by these tools, thereby providing better insight into defecttolerant design decisions. We believe that these tools will help furthering research and pedagogical interests in this area, expedite the reliability analysis process and enhance the accuracy of establishing reliability-redundancy trade-off points. === Master of Science