Comprehensive Multi-Scale Progressive Failure Analysis for Damage Arresting Advanced Aerospace Hybrid Structures

In recent years, the prevalence and application of composite materials has exploded. Due to the demands of commercial transportation, the aviation industry has taken a leading role in the integration of composite structures. Among the leading concepts to develop lighter, more fuel-efficient commerci...

Full description

Bibliographic Details
Main Author: Horton, Brandon Alexander
Other Authors: Mechanical Engineering
Format: Others
Published: Virginia Tech 2019
Subjects:
Online Access:http://hdl.handle.net/10919/93961
id ndltd-VTETD-oai-vtechworks.lib.vt.edu-10919-93961
record_format oai_dc
spelling ndltd-VTETD-oai-vtechworks.lib.vt.edu-10919-939612020-09-29T05:30:44Z Comprehensive Multi-Scale Progressive Failure Analysis for Damage Arresting Advanced Aerospace Hybrid Structures Horton, Brandon Alexander Mechanical Engineering Bayandor, Javid Scales, Wayne A. O'Brien, Walter F. Jr. Collier, Fayette Jegley, Dawn C. Battaglia, Francine Stitched Composites Finite Element Analysis Multi-scale Modeling Composite Damage In recent years, the prevalence and application of composite materials has exploded. Due to the demands of commercial transportation, the aviation industry has taken a leading role in the integration of composite structures. Among the leading concepts to develop lighter, more fuel-efficient commercial transport is the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept. The highly integrated structure of PRSEUS allows pressurized, non-circular fuselage designs to be implemented, enabling the feasibility of Hybrid Wing Body (HWB) aircraft. In addition to its unique fabrication process, the through-thickness stitching utilized by PRSEUS overcomes the low post-damage strength present in typical composites. Although many proof-of-concept tests have been performed that demonstrate the potential for PRSEUS, efficient computational tools must be developed before the concept can be commercially certified and implemented. In an attempt to address this need, a comprehensive modeling approach is developed that investigates PRSEUS at multiple scales. The majority of available experiments for comparison have been conducted at the coupon level. Therefore, a computational methodology is progressively developed based on physically realistic concepts without the use of tuning parameters. A thorough verification study is performed to identify the most effective approach to model PRSEUS, including the effect of element type, boundary conditions, bonding properties, and model fidelity. Using the results of this baseline study, a high fidelity stringer model is created at the component scale and validated against the existing experiments. Finally, the validated model is extended to larger scales to compare PRSEUS to the current state-of-the-art. Throughout the current work, the developed methodology is demonstrated to make accurate predictions that are well beyond the capability of existing predictive models. While using commercially available predictive tools, the methodology developed herein can accurately predict local behavior up to and beyond failure for stitched structures such as PRSEUS for the first time. Additionally, by extending the methodology to a large scale fuselage section drop scenario, the dynamic behavior of PRSEUS was investigated for the first time. With the predictive capabilities and unique insight provided, the work herein may serve to benefit future iteration of PRSEUS as well as certification by analysis efforts for future airframe development. PHD 2019-09-22T06:01:19Z 2019-09-22T06:01:19Z 2017-08-31 Dissertation vt_gsexam:12569 http://hdl.handle.net/10919/93961 In Copyright http://rightsstatements.org/vocab/InC/1.0/ ETD application/pdf Virginia Tech
collection NDLTD
format Others
sources NDLTD
topic Stitched Composites
Finite Element Analysis
Multi-scale Modeling
Composite Damage
spellingShingle Stitched Composites
Finite Element Analysis
Multi-scale Modeling
Composite Damage
Horton, Brandon Alexander
Comprehensive Multi-Scale Progressive Failure Analysis for Damage Arresting Advanced Aerospace Hybrid Structures
description In recent years, the prevalence and application of composite materials has exploded. Due to the demands of commercial transportation, the aviation industry has taken a leading role in the integration of composite structures. Among the leading concepts to develop lighter, more fuel-efficient commercial transport is the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept. The highly integrated structure of PRSEUS allows pressurized, non-circular fuselage designs to be implemented, enabling the feasibility of Hybrid Wing Body (HWB) aircraft. In addition to its unique fabrication process, the through-thickness stitching utilized by PRSEUS overcomes the low post-damage strength present in typical composites. Although many proof-of-concept tests have been performed that demonstrate the potential for PRSEUS, efficient computational tools must be developed before the concept can be commercially certified and implemented. In an attempt to address this need, a comprehensive modeling approach is developed that investigates PRSEUS at multiple scales. The majority of available experiments for comparison have been conducted at the coupon level. Therefore, a computational methodology is progressively developed based on physically realistic concepts without the use of tuning parameters. A thorough verification study is performed to identify the most effective approach to model PRSEUS, including the effect of element type, boundary conditions, bonding properties, and model fidelity. Using the results of this baseline study, a high fidelity stringer model is created at the component scale and validated against the existing experiments. Finally, the validated model is extended to larger scales to compare PRSEUS to the current state-of-the-art. Throughout the current work, the developed methodology is demonstrated to make accurate predictions that are well beyond the capability of existing predictive models. While using commercially available predictive tools, the methodology developed herein can accurately predict local behavior up to and beyond failure for stitched structures such as PRSEUS for the first time. Additionally, by extending the methodology to a large scale fuselage section drop scenario, the dynamic behavior of PRSEUS was investigated for the first time. With the predictive capabilities and unique insight provided, the work herein may serve to benefit future iteration of PRSEUS as well as certification by analysis efforts for future airframe development. === PHD
author2 Mechanical Engineering
author_facet Mechanical Engineering
Horton, Brandon Alexander
author Horton, Brandon Alexander
author_sort Horton, Brandon Alexander
title Comprehensive Multi-Scale Progressive Failure Analysis for Damage Arresting Advanced Aerospace Hybrid Structures
title_short Comprehensive Multi-Scale Progressive Failure Analysis for Damage Arresting Advanced Aerospace Hybrid Structures
title_full Comprehensive Multi-Scale Progressive Failure Analysis for Damage Arresting Advanced Aerospace Hybrid Structures
title_fullStr Comprehensive Multi-Scale Progressive Failure Analysis for Damage Arresting Advanced Aerospace Hybrid Structures
title_full_unstemmed Comprehensive Multi-Scale Progressive Failure Analysis for Damage Arresting Advanced Aerospace Hybrid Structures
title_sort comprehensive multi-scale progressive failure analysis for damage arresting advanced aerospace hybrid structures
publisher Virginia Tech
publishDate 2019
url http://hdl.handle.net/10919/93961
work_keys_str_mv AT hortonbrandonalexander comprehensivemultiscaleprogressivefailureanalysisfordamagearrestingadvancedaerospacehybridstructures
_version_ 1719343224004280320