Functional Protein Based Materials

The proteins wheat gluten and gelatin were tested for use in biocomposites and soft actuating materials, respectively. In Chapter II, the self-assembly mechanism of trypsin hydrolyzed wheat gluten (THWG) into rigid β-sheets was applied to an aqueous polyvinyl alcohol (PVA) environment. Aqueous PVA w...

Full description

Bibliographic Details
Main Author: Hanzly, Laura Elizabeth
Other Authors: Biological Systems Engineering
Format: Others
Published: Virginia Tech 2019
Subjects:
Online Access:http://hdl.handle.net/10919/91934
id ndltd-VTETD-oai-vtechworks.lib.vt.edu-10919-91934
record_format oai_dc
collection NDLTD
format Others
sources NDLTD
topic Protein
Amyloid
Actuators
Gelatin
Soft Robotics
spellingShingle Protein
Amyloid
Actuators
Gelatin
Soft Robotics
Hanzly, Laura Elizabeth
Functional Protein Based Materials
description The proteins wheat gluten and gelatin were tested for use in biocomposites and soft actuating materials, respectively. In Chapter II, the self-assembly mechanism of trypsin hydrolyzed wheat gluten (THWG) into rigid β-sheets was applied to an aqueous polyvinyl alcohol (PVA) environment. Aqueous PVA was used in order to determine the effects of an aqueous environment other than pure water on THWG self-assembly kinetics and to realize the potential use of THWG as a nanofiller in polymer matrices. THWG was able to self-assemble into anisotropic spikes and agglomerates of spikes called "pompons" through hydrophobic interactions. THWG self-assembly kinetics were retarded in aqueous PVA solutions compared to water, with the highest molecular weight PVA solution showing the slowest self-assembly kinetics. Chapters III and IV explore the potential of gelatin hydrogels for use in soft actuators. A gelatin bilayer system was designed where an active layer swelled more than a passive layer to cause the system to bend/actuate in response to an environmental stimulus. In Chapter III, gelatin layers were chemically crosslinked to different degrees with glutaraldehyde to achieve bilayer bending when placed in water. Curvature of the bilayer system was found to be dependent on the difference in volume swell ratio between the two layers. It was determined that maximum bending occurred when the passive layer swelled to 60% of the swelling of the active layer. Addition of pre-gelatinized starch to the active layer increased layer swelling and bilayer curvature. Treating the starch containing bilayer with -amylase returned the bilayer to its original shape. In Chapter IV, a pH responsive gelatin bilayer was constructed using Type A and Type B gelatin. Type A and Type B gelatin gels had different chemical properties and swelled to different volumes based on the gel solution pH. Bilayers constructed from Type A and Type B gelatin exhibited different degrees of bending when placed in various pH solutions with maximum curvature occuring at pH 10. A cyclic actuator could be formed when the bent bilayers were placed in a minimum of 0.01M NaCl solution. Placement in salt solution resulted in the unbending of the bilayer. Overall, this work demonstrated the various applications of proteins as functional and green materials. === Doctor of Philosophy === The majority of plastics consist of synthetic polymers derived from oil that cannot be broken down by the environment (i.e., not biodegradable). Research is underway to develop sustainable, biodegradable materials. Proteins are a biological polymer that have a wide range of chemical, structural, and functional properties; for this reason they are an excellent source material for use in the design of environmental friendly materials. In Chapter II, the ability of wheat gluten protein to self-assemble into rigid, nanosized structures is used to explore the potential of the protein to be used as a biodegradable nanofiller. A nanofiller is added to various materials in order to improve the overall mechanical properties of the material. Wheat gluten is self-assembled in an aqueous polymer environment. The results show that the polymer environment stunts or slows down the self-assembly rate of the protein compared to a pure water environment. Nanometer sized spikes form in the polymer solutions, indicating wheat gluten could be used as a nanofiller in certain materials. Chapters III and IV explore the use of gelatin proteins for applications in soft robotics. Soft robots and their moveable parts, called soft actuators, are deformable and respond to changes in the environment such as pH, light, temperature, etc. For this reason, soft robots are considerable adaptable compared to traditional rigid robots. Designing a soft actuator from gelatin gels would result in a “smart” material that is biocompatible and biodegradable. A gelatin soft actuator is created using a bilayer design in which one layer of the bilayer swells more than the other layer causing the entire system to bend/actuate. Depending on how the bilayer system was fabricated, bending could be achieved based on stimuli such as the presence of water, the presence of a substrate and enzyme, and changes in pH. Overall, this dissertation demonstrates the extraordinary potential for the use of proteins in designing sustainable materials.
author2 Biological Systems Engineering
author_facet Biological Systems Engineering
Hanzly, Laura Elizabeth
author Hanzly, Laura Elizabeth
author_sort Hanzly, Laura Elizabeth
title Functional Protein Based Materials
title_short Functional Protein Based Materials
title_full Functional Protein Based Materials
title_fullStr Functional Protein Based Materials
title_full_unstemmed Functional Protein Based Materials
title_sort functional protein based materials
publisher Virginia Tech
publishDate 2019
url http://hdl.handle.net/10919/91934
work_keys_str_mv AT hanzlylauraelizabeth functionalproteinbasedmaterials
_version_ 1719358012033859584
spelling ndltd-VTETD-oai-vtechworks.lib.vt.edu-10919-919342020-11-19T05:46:18Z Functional Protein Based Materials Hanzly, Laura Elizabeth Biological Systems Engineering Barone, Justin R. Frazier, Charles E. Zhang, Chenming Senger, Ryan S. Protein Amyloid Actuators Gelatin Soft Robotics The proteins wheat gluten and gelatin were tested for use in biocomposites and soft actuating materials, respectively. In Chapter II, the self-assembly mechanism of trypsin hydrolyzed wheat gluten (THWG) into rigid β-sheets was applied to an aqueous polyvinyl alcohol (PVA) environment. Aqueous PVA was used in order to determine the effects of an aqueous environment other than pure water on THWG self-assembly kinetics and to realize the potential use of THWG as a nanofiller in polymer matrices. THWG was able to self-assemble into anisotropic spikes and agglomerates of spikes called "pompons" through hydrophobic interactions. THWG self-assembly kinetics were retarded in aqueous PVA solutions compared to water, with the highest molecular weight PVA solution showing the slowest self-assembly kinetics. Chapters III and IV explore the potential of gelatin hydrogels for use in soft actuators. A gelatin bilayer system was designed where an active layer swelled more than a passive layer to cause the system to bend/actuate in response to an environmental stimulus. In Chapter III, gelatin layers were chemically crosslinked to different degrees with glutaraldehyde to achieve bilayer bending when placed in water. Curvature of the bilayer system was found to be dependent on the difference in volume swell ratio between the two layers. It was determined that maximum bending occurred when the passive layer swelled to 60% of the swelling of the active layer. Addition of pre-gelatinized starch to the active layer increased layer swelling and bilayer curvature. Treating the starch containing bilayer with -amylase returned the bilayer to its original shape. In Chapter IV, a pH responsive gelatin bilayer was constructed using Type A and Type B gelatin. Type A and Type B gelatin gels had different chemical properties and swelled to different volumes based on the gel solution pH. Bilayers constructed from Type A and Type B gelatin exhibited different degrees of bending when placed in various pH solutions with maximum curvature occuring at pH 10. A cyclic actuator could be formed when the bent bilayers were placed in a minimum of 0.01M NaCl solution. Placement in salt solution resulted in the unbending of the bilayer. Overall, this work demonstrated the various applications of proteins as functional and green materials. Doctor of Philosophy The majority of plastics consist of synthetic polymers derived from oil that cannot be broken down by the environment (i.e., not biodegradable). Research is underway to develop sustainable, biodegradable materials. Proteins are a biological polymer that have a wide range of chemical, structural, and functional properties; for this reason they are an excellent source material for use in the design of environmental friendly materials. In Chapter II, the ability of wheat gluten protein to self-assemble into rigid, nanosized structures is used to explore the potential of the protein to be used as a biodegradable nanofiller. A nanofiller is added to various materials in order to improve the overall mechanical properties of the material. Wheat gluten is self-assembled in an aqueous polymer environment. The results show that the polymer environment stunts or slows down the self-assembly rate of the protein compared to a pure water environment. Nanometer sized spikes form in the polymer solutions, indicating wheat gluten could be used as a nanofiller in certain materials. Chapters III and IV explore the use of gelatin proteins for applications in soft robotics. Soft robots and their moveable parts, called soft actuators, are deformable and respond to changes in the environment such as pH, light, temperature, etc. For this reason, soft robots are considerable adaptable compared to traditional rigid robots. Designing a soft actuator from gelatin gels would result in a “smart” material that is biocompatible and biodegradable. A gelatin soft actuator is created using a bilayer design in which one layer of the bilayer swells more than the other layer causing the entire system to bend/actuate. Depending on how the bilayer system was fabricated, bending could be achieved based on stimuli such as the presence of water, the presence of a substrate and enzyme, and changes in pH. Overall, this dissertation demonstrates the extraordinary potential for the use of proteins in designing sustainable materials. 2019-07-24T08:00:20Z 2019-07-24T08:00:20Z 2019-07-23 Dissertation vt_gsexam:21741 http://hdl.handle.net/10919/91934 In Copyright http://rightsstatements.org/vocab/InC/1.0/ ETD application/pdf Virginia Tech