Summary: | A rise in interest for service robotic rovers produces a need for a low-cost method for source localization in order for a prospective robotic unit to engage with a human operator. This study examines the use of the LMS algorithm for constructing a beamformer using an optimized Weiner filter solution for this source localization application and evaluates the robustness of a developed characterization method for assuring that a proper approximation for the desired signal is achieved. The method presented in this paper encompasses using a filter and sum method in which the sums are generated for a selected set of filter angles, and this set of sums are compared and characterized to produce a selection for an approximate arrival angle from the sound source to the microphone array. These filters are adaptively trained offline using a generated desired signal chirp to represent the average human whistle and a training data set for each of the four possible room configurations. This method was tested to determine if a selected filter configuration could still produce viable outputs for scenarios in which the testing room had been changed, whether noise was injected into the testing environment, if two or three microphones were used in testing process, and whether the filter angles are aligned with the arrival angles of the signal. Results on the robustness of the adaptive LMS beamformer are presented. Limitations of the system performance are discussed and possible solutions for results that have undesired performance are given in future work. === Master of Science
|