Pinus taeda growth and phosphorus uptake as affected by interactions of mycorrhizae and supplemental phosphorus

A greenhouse study was initiated to asses P uptake, growth, colonization, total mycorrhizal P levels, and mycorrhizal polyphosphate levels in loblolly pine seedlings colonized with different ectomycorrhizal fungi and grown in a Piedmont soil. The pine seedlings were inoculated with one of four speci...

Full description

Bibliographic Details
Main Author: Ford, Victor Lavann
Other Authors: Forestry and Forest Products
Format: Others
Language:en_US
Published: Virginia Polytechnic Institute and State University 2017
Subjects:
Online Access:http://hdl.handle.net/10919/81018
id ndltd-VTETD-oai-vtechworks.lib.vt.edu-10919-81018
record_format oai_dc
spelling ndltd-VTETD-oai-vtechworks.lib.vt.edu-10919-810182020-09-29T05:35:59Z Pinus taeda growth and phosphorus uptake as affected by interactions of mycorrhizae and supplemental phosphorus Ford, Victor Lavann Forestry and Forest Products LD5655.V856 1982.F587 Loblolly pine Plants -- Effect of phosphorus on Mycorrhizas A greenhouse study was initiated to asses P uptake, growth, colonization, total mycorrhizal P levels, and mycorrhizal polyphosphate levels in loblolly pine seedlings colonized with different ectomycorrhizal fungi and grown in a Piedmont soil. The pine seedlings were inoculated with one of four species of fungi (Scleroderma aurantium, Pisolithus tinctorius, Thelephora terrestris, and Rhizopogon roseolus). Uninoculated trees served as a control. The seedlings were grown in pots containing a Cecil sandy clay loam amended with one of the following: 75% sand, 25% sand, enamended, 56 kg P ha⁻¹, 112 kg P ha⁻¹. They were harvested ten months after planting. Shoot lengths, root lengths, biomass, and total P of all plant parts including mycorrhizae were determined. Mycorrhizae of T terrestris and S aurantium were analyzed for polyphosphates, and amended soils were analyzed before planting and after harvest for double-acid extractable Al, Fe, and P. Each fungus changed postharvest extractable P, Fe, and Al differently in the soil amendments. Seedlings colonized with S. aurantium were larger, contained more P, and had a higher degree of mycorrhizal colonization. There was no significant differences in growth among seedlings colonized with the other three fungi, but all colonized seedlings were significantly larger and contained more P than uncolonized seedlings. Soil amendments had no effect on the total levels of mycorrhizal P. Mycorrhizae of S. aurantium increased polyphosphate levels with increasing available P in the soil amendments. The pattern of polyphosphate accumulation in T. terrestris among the soil treatments was less definitive. Accumulation of foliar P was affected by the interaction of soil and mycorrhizal treatments. Control seedlings were P deficient in all soil treatments although foliar P increased as soil P increased. The accumulation of foliar P seemed to reflect the ability of each symbiont to survive, uptake P, and transfer it to the seedling. Seedlings colonized with S. aurantium were P deficient in sand-amended soils, while seedlings colonized with R. roseolus were P deficient in fertilized soils. Seedlings colonized with either P. tinctorius or t. Terrestris increased foliar P with the addition of sand the addition of P. This study indicates that S. aurantium is adapted to Piedmont soils such as the Cecil, is able to extract more of the vast amount of unavailable P present in these soils, and hence stimulate growth and P levels in loblolly pine. Ph. D. 2017-12-06T15:20:52Z 2017-12-06T15:20:52Z 1982 Dissertation Text http://hdl.handle.net/10919/81018 en_US OCLC# 9472756 In Copyright http://rightsstatements.org/vocab/InC/1.0/ xi, 130 leaves application/pdf application/pdf Virginia Polytechnic Institute and State University
collection NDLTD
language en_US
format Others
sources NDLTD
topic LD5655.V856 1982.F587
Loblolly pine
Plants -- Effect of phosphorus on
Mycorrhizas
spellingShingle LD5655.V856 1982.F587
Loblolly pine
Plants -- Effect of phosphorus on
Mycorrhizas
Ford, Victor Lavann
Pinus taeda growth and phosphorus uptake as affected by interactions of mycorrhizae and supplemental phosphorus
description A greenhouse study was initiated to asses P uptake, growth, colonization, total mycorrhizal P levels, and mycorrhizal polyphosphate levels in loblolly pine seedlings colonized with different ectomycorrhizal fungi and grown in a Piedmont soil. The pine seedlings were inoculated with one of four species of fungi (Scleroderma aurantium, Pisolithus tinctorius, Thelephora terrestris, and Rhizopogon roseolus). Uninoculated trees served as a control. The seedlings were grown in pots containing a Cecil sandy clay loam amended with one of the following: 75% sand, 25% sand, enamended, 56 kg P ha⁻¹, 112 kg P ha⁻¹. They were harvested ten months after planting. Shoot lengths, root lengths, biomass, and total P of all plant parts including mycorrhizae were determined. Mycorrhizae of T terrestris and S aurantium were analyzed for polyphosphates, and amended soils were analyzed before planting and after harvest for double-acid extractable Al, Fe, and P. Each fungus changed postharvest extractable P, Fe, and Al differently in the soil amendments. Seedlings colonized with S. aurantium were larger, contained more P, and had a higher degree of mycorrhizal colonization. There was no significant differences in growth among seedlings colonized with the other three fungi, but all colonized seedlings were significantly larger and contained more P than uncolonized seedlings. Soil amendments had no effect on the total levels of mycorrhizal P. Mycorrhizae of S. aurantium increased polyphosphate levels with increasing available P in the soil amendments. The pattern of polyphosphate accumulation in T. terrestris among the soil treatments was less definitive. Accumulation of foliar P was affected by the interaction of soil and mycorrhizal treatments. Control seedlings were P deficient in all soil treatments although foliar P increased as soil P increased. The accumulation of foliar P seemed to reflect the ability of each symbiont to survive, uptake P, and transfer it to the seedling. Seedlings colonized with S. aurantium were P deficient in sand-amended soils, while seedlings colonized with R. roseolus were P deficient in fertilized soils. Seedlings colonized with either P. tinctorius or t. Terrestris increased foliar P with the addition of sand the addition of P. This study indicates that S. aurantium is adapted to Piedmont soils such as the Cecil, is able to extract more of the vast amount of unavailable P present in these soils, and hence stimulate growth and P levels in loblolly pine. === Ph. D.
author2 Forestry and Forest Products
author_facet Forestry and Forest Products
Ford, Victor Lavann
author Ford, Victor Lavann
author_sort Ford, Victor Lavann
title Pinus taeda growth and phosphorus uptake as affected by interactions of mycorrhizae and supplemental phosphorus
title_short Pinus taeda growth and phosphorus uptake as affected by interactions of mycorrhizae and supplemental phosphorus
title_full Pinus taeda growth and phosphorus uptake as affected by interactions of mycorrhizae and supplemental phosphorus
title_fullStr Pinus taeda growth and phosphorus uptake as affected by interactions of mycorrhizae and supplemental phosphorus
title_full_unstemmed Pinus taeda growth and phosphorus uptake as affected by interactions of mycorrhizae and supplemental phosphorus
title_sort pinus taeda growth and phosphorus uptake as affected by interactions of mycorrhizae and supplemental phosphorus
publisher Virginia Polytechnic Institute and State University
publishDate 2017
url http://hdl.handle.net/10919/81018
work_keys_str_mv AT fordvictorlavann pinustaedagrowthandphosphorusuptakeasaffectedbyinteractionsofmycorrhizaeandsupplementalphosphorus
_version_ 1719344336222552064