Hoeffding-Tree-Based Learning from Data Streams and Its Application in Online Voltage Security Assessment
According to the proposed definition and classification of power system stability addressed by IEEE and CIGRE Task Force, voltage stability refers to the stability of maintaining the steady voltage magnitudes at all buses in a power system when the system is subjected to a disturbance from a given o...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Published: |
Virginia Tech
2017
|
Subjects: | |
Online Access: | http://hdl.handle.net/10919/78805 |
id |
ndltd-VTETD-oai-vtechworks.lib.vt.edu-10919-78805 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-VTETD-oai-vtechworks.lib.vt.edu-10919-788052021-12-08T05:44:48Z Hoeffding-Tree-Based Learning from Data Streams and Its Application in Online Voltage Security Assessment Nie, Zhijie Electrical and Computer Engineering Centeno, Virgilio A. Kekatos, Vasileios De La Ree, Jaime Power Systems Stability Voltage Security Assessment Machine Learning Decision Trees Hoeffding Trees According to the proposed definition and classification of power system stability addressed by IEEE and CIGRE Task Force, voltage stability refers to the stability of maintaining the steady voltage magnitudes at all buses in a power system when the system is subjected to a disturbance from a given operating condition (OC). Cascading outage due to voltage collapse is a probable consequence during insecure voltage situations. In this regard, fast responding and reliable voltage security assessment (VSA) is effective and indispensable for system to survive in conceivable contingencies. This paper aims at establishing an online systematic framework for voltage security assessment with high-speed data streams from synchrophasors and phasor data concentrators (PDCs). Periodically updated decision trees (DTs) have been applied in different subjects of security assessments in power systems. However, with a training data set of operating conditions that grows rapidly, re-training and restructuring a decision tree becomes a time-consuming process. Hoeffding-tree-based method constructs a learner that is capable of memory management to process streaming data without retaining the complete data set for training purposes in real-time and guarantees the accuracy of learner. The proposed approach of voltage security assessment based on Very Fast Decision Tree (VFDT) system is tested and evaluated by the IEEE 118-bus standard system. Master of Science 2017-09-06T08:00:59Z 2017-09-06T08:00:59Z 2017-09-05 Thesis vt_gsexam:12647 http://hdl.handle.net/10919/78805 In Copyright http://rightsstatements.org/vocab/InC/1.0/ ETD application/pdf Virginia Tech |
collection |
NDLTD |
format |
Others
|
sources |
NDLTD |
topic |
Power Systems Stability Voltage Security Assessment Machine Learning Decision Trees Hoeffding Trees |
spellingShingle |
Power Systems Stability Voltage Security Assessment Machine Learning Decision Trees Hoeffding Trees Nie, Zhijie Hoeffding-Tree-Based Learning from Data Streams and Its Application in Online Voltage Security Assessment |
description |
According to the proposed definition and classification of power system stability addressed by IEEE and CIGRE Task Force, voltage stability refers to the stability of maintaining the steady voltage magnitudes at all buses in a power system when the system is subjected to a disturbance from a given operating condition (OC). Cascading outage due to voltage collapse is a probable consequence during insecure voltage situations. In this regard, fast responding and reliable voltage security assessment (VSA) is effective and indispensable for system to survive in conceivable contingencies. This paper aims at establishing an online systematic framework for voltage security assessment with high-speed data streams from synchrophasors and phasor data concentrators (PDCs). Periodically updated decision trees (DTs) have been applied in different subjects of security assessments in power systems. However, with a training data set of operating conditions that grows rapidly, re-training and restructuring a decision tree becomes a time-consuming process. Hoeffding-tree-based method constructs a learner that is capable of memory management to process streaming data without retaining the complete data set for training purposes in real-time and
guarantees the accuracy of learner. The proposed approach of voltage security assessment based on Very Fast Decision Tree (VFDT) system is tested and evaluated by the IEEE 118-bus standard system. === Master of Science |
author2 |
Electrical and Computer Engineering |
author_facet |
Electrical and Computer Engineering Nie, Zhijie |
author |
Nie, Zhijie |
author_sort |
Nie, Zhijie |
title |
Hoeffding-Tree-Based Learning from Data Streams and Its Application in Online Voltage Security Assessment |
title_short |
Hoeffding-Tree-Based Learning from Data Streams and Its Application in Online Voltage Security Assessment |
title_full |
Hoeffding-Tree-Based Learning from Data Streams and Its Application in Online Voltage Security Assessment |
title_fullStr |
Hoeffding-Tree-Based Learning from Data Streams and Its Application in Online Voltage Security Assessment |
title_full_unstemmed |
Hoeffding-Tree-Based Learning from Data Streams and Its Application in Online Voltage Security Assessment |
title_sort |
hoeffding-tree-based learning from data streams and its application in online voltage security assessment |
publisher |
Virginia Tech |
publishDate |
2017 |
url |
http://hdl.handle.net/10919/78805 |
work_keys_str_mv |
AT niezhijie hoeffdingtreebasedlearningfromdatastreamsanditsapplicationinonlinevoltagesecurityassessment |
_version_ |
1723964024343756800 |