The Translationally Controlled Tumor Protein (TCTP) associates to and destabilizes the Circadian Factor Period 2 (Per2)
Period 2 (Per2) is a core circadian factor responsible for its own negative regulation. It operates in the circadian clock, which affects multiple biological functions such as metabolic rate, hormone release, and core body temperature. The Per2 protein functions directly with factors in other biolog...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Language: | en_US |
Published: |
Virginia Tech
2017
|
Subjects: | |
Online Access: | http://hdl.handle.net/10919/76848 http://scholar.lib.vt.edu/theses/available/etd-08202010-143442/ |
id |
ndltd-VTETD-oai-vtechworks.lib.vt.edu-10919-76848 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-VTETD-oai-vtechworks.lib.vt.edu-10919-768482020-09-29T05:40:49Z The Translationally Controlled Tumor Protein (TCTP) associates to and destabilizes the Circadian Factor Period 2 (Per2) Kim, Kevin Dae Keon Biology Finkielstein, Carla V. Kennelly, Peter J. Capelluto, Daniel G. S. Li, Liwu circadian clock proteolysis Period2 Translationally controlled tumor protein Period 2 (Per2) is a core circadian factor responsible for its own negative regulation. It operates in the circadian clock, which affects multiple biological functions such as metabolic rate, hormone release, and core body temperature. The Per2 protein functions directly with factors in other biological functions such as tumor suppression, immune system, and metabolism. In many cases, the Per2 deficiency caused by disrupted expression is sufficient to create severe abnormalities in many of the mentioned functions. The sequence contains several domains and motifs in Per2 that are traditionally involved in protein interactions which suggests that Per2 serving a regulatory role by effecting downstream biological roles dependent on Per2 stability. In this work, we perform a two-hybrid screening assay using the C-terminal region of human Per2 and identified an extensive number of interactors. Utilizing a genetic ontology program, we assorted the list of clones into groups of proteins that are biologically relevant or operated in similar function. Through this program, we validated the two-hybrid screening by the clusters of biological function already attributed to hPer2 and identified new putative biological functions. We use the new putative interactors to gain further insight on the regulatory roles that hPer2 performs, in conjunction with operating as a core factor in circadian rhythmicity. We also show that Translationally Controlled Tumor Protein (TCTP) is capable of binding to hPer2 and is a novel interaction. When a sufficient amount of TCTP (1:1 molar stoichiometric ratio) is present in a system, a cleavage of hPer2 is observed in vitro. This cleavage occurs in reactions independent of ATP, ubiquitin, and the proteasome. The data points towards a method of cleavage similar to that of the archael lon-tk (Thermococcus kodakaraensis) that preferentially cleaved unstructured substrates in ATP-independent reactions. Master of Science 2017-04-04T19:49:42Z 2017-04-04T19:49:42Z 2010-08-06 2010-08-20 2016-10-04 2010-09-09 Thesis Text etd-08202010-143442 http://hdl.handle.net/10919/76848 http://scholar.lib.vt.edu/theses/available/etd-08202010-143442/ en_US In Copyright http://rightsstatements.org/vocab/InC/1.0/ application/pdf Virginia Tech |
collection |
NDLTD |
language |
en_US |
format |
Others
|
sources |
NDLTD |
topic |
circadian clock proteolysis Period2 Translationally controlled tumor protein |
spellingShingle |
circadian clock proteolysis Period2 Translationally controlled tumor protein Kim, Kevin Dae Keon The Translationally Controlled Tumor Protein (TCTP) associates to and destabilizes the Circadian Factor Period 2 (Per2) |
description |
Period 2 (Per2) is a core circadian factor responsible for its own negative regulation. It operates in the circadian clock, which affects multiple biological functions such as metabolic rate, hormone release, and core body temperature. The Per2 protein functions directly with factors in other biological functions such as tumor suppression, immune system, and metabolism. In many cases, the Per2 deficiency caused by disrupted expression is sufficient to create severe abnormalities in many of the mentioned functions. The sequence contains several domains and motifs in Per2 that are traditionally involved in protein interactions which suggests that Per2 serving a regulatory role by effecting downstream biological roles dependent on Per2 stability.
In this work, we perform a two-hybrid screening assay using the C-terminal region of human Per2 and identified an extensive number of interactors. Utilizing a genetic ontology program, we assorted the list of clones into groups of proteins that are biologically relevant or operated in similar function. Through this program, we validated the two-hybrid screening by the clusters of biological function already attributed to hPer2 and identified new putative biological functions. We use the new putative interactors to gain further insight on the regulatory roles that hPer2 performs, in conjunction with operating as a core factor in circadian rhythmicity.
We also show that Translationally Controlled Tumor Protein (TCTP) is capable of binding to hPer2 and is a novel interaction. When a sufficient amount of TCTP (1:1 molar stoichiometric ratio) is present in a system, a cleavage of hPer2 is observed in vitro. This cleavage occurs in reactions independent of ATP, ubiquitin, and the proteasome. The data points towards a method of cleavage similar to that of the archael lon-tk (Thermococcus kodakaraensis) that preferentially cleaved unstructured substrates in ATP-independent reactions. === Master of Science |
author2 |
Biology |
author_facet |
Biology Kim, Kevin Dae Keon |
author |
Kim, Kevin Dae Keon |
author_sort |
Kim, Kevin Dae Keon |
title |
The Translationally Controlled Tumor Protein (TCTP) associates to and destabilizes the Circadian Factor Period 2 (Per2) |
title_short |
The Translationally Controlled Tumor Protein (TCTP) associates to and destabilizes the Circadian Factor Period 2 (Per2) |
title_full |
The Translationally Controlled Tumor Protein (TCTP) associates to and destabilizes the Circadian Factor Period 2 (Per2) |
title_fullStr |
The Translationally Controlled Tumor Protein (TCTP) associates to and destabilizes the Circadian Factor Period 2 (Per2) |
title_full_unstemmed |
The Translationally Controlled Tumor Protein (TCTP) associates to and destabilizes the Circadian Factor Period 2 (Per2) |
title_sort |
translationally controlled tumor protein (tctp) associates to and destabilizes the circadian factor period 2 (per2) |
publisher |
Virginia Tech |
publishDate |
2017 |
url |
http://hdl.handle.net/10919/76848 http://scholar.lib.vt.edu/theses/available/etd-08202010-143442/ |
work_keys_str_mv |
AT kimkevindaekeon thetranslationallycontrolledtumorproteintctpassociatestoanddestabilizesthecircadianfactorperiod2per2 AT kimkevindaekeon translationallycontrolledtumorproteintctpassociatestoanddestabilizesthecircadianfactorperiod2per2 |
_version_ |
1719345026529492992 |