Measurements, Modeling and Analysis of High Pressure Gas Sorption in Shale and Coal for Unconventional Gas Recovery and Carbon Sequestration

In order to exploit unconventional gas and estimate carbon dioxide storage potential in shale formations and coal seams, two key questions need to be initially answered: 1) What is the total gas-in-place (GIP) in the subsurface reservoirs? 2) What is the exact ratio between bulk gas conte...

Full description

Bibliographic Details
Main Author: Tang, Xu
Other Authors: Mining and Minerals Engineering
Format: Others
Published: Virginia Tech 2017
Subjects:
Online Access:http://hdl.handle.net/10919/74237
id ndltd-VTETD-oai-vtechworks.lib.vt.edu-10919-74237
record_format oai_dc
spelling ndltd-VTETD-oai-vtechworks.lib.vt.edu-10919-742372020-09-29T05:36:21Z Measurements, Modeling and Analysis of High Pressure Gas Sorption in Shale and Coal for Unconventional Gas Recovery and Carbon Sequestration Tang, Xu Mining and Minerals Engineering Ripepi, Nino S. Luttrell, Gerald H. Hall, Matthew Robert Luxbacher, Kramer Davis Chen, Cheng adsorption shale coal high pressure methane carbon dioxide thermodynamics kinetics In order to exploit unconventional gas and estimate carbon dioxide storage potential in shale formations and coal seams, two key questions need to be initially answered: 1) What is the total gas-in-place (GIP) in the subsurface reservoirs? 2) What is the exact ratio between bulk gas content and adsorbed gas content? Both questions require precise estimation of adsorbed phase capacity of gases (methane and carbon dioxide) and their adsorption behavior in shale and coal. This dissertation therefore analyzes adsorption isotherms, thermodynamics, and kinetics properties of methane and carbon dioxide in shale and coal based on experimental results to provide preliminary answers to both questions. It was found that the dual-site Langmuir model can describe both methane and carbon dioxide adsorption isotherms in shale and coal under high pressure and high temperature conditions (up to 27 MPa and 355.15K). This allows for accurate estimation of the true methane and carbon dioxide GIP content and the relative quantity of adsorbed phases of gases at in situ temperatures and pressures representative of deep shale formations and coal seams. The concept of a deep shale gas reservoir is then proposed to optimize shale gas development methodology based on the successful application of the model for methane adsorption in shale. Based on the dual-site Langmuir model, the isosteric heat of adsorption is calculated analytically by considering both the real gas behavior and the adsorbed phase under high pressure, both of which are ignored in the classic Clausius–Clapeyron approximation. It was also found that the isosteric heat of adsorption in Henry's pressure region is independent of temperature and can serve as a quantified index to evaluate the methane adsorption affinity on coal. In order to understand the dynamic response of gas adsorption in coal for carbon sequestration, both gas adsorption kinetics and pore structure of coal are investigated. The pseudo-second order model is applied to simulate the adsorption kinetics of carbon dioxide in coals under different pressures. Coal particle size effects on pore characterization of coal and carbon dioxide and nitrogen ad/desorption behavior in coal was also investigated. Ph. D. 2017-01-11T09:00:43Z 2017-01-11T09:00:43Z 2017-01-10 Dissertation vt_gsexam:9308 http://hdl.handle.net/10919/74237 In Copyright http://rightsstatements.org/vocab/InC/1.0/ ETD application/pdf Virginia Tech
collection NDLTD
format Others
sources NDLTD
topic adsorption
shale
coal
high pressure
methane
carbon dioxide
thermodynamics
kinetics
spellingShingle adsorption
shale
coal
high pressure
methane
carbon dioxide
thermodynamics
kinetics
Tang, Xu
Measurements, Modeling and Analysis of High Pressure Gas Sorption in Shale and Coal for Unconventional Gas Recovery and Carbon Sequestration
description In order to exploit unconventional gas and estimate carbon dioxide storage potential in shale formations and coal seams, two key questions need to be initially answered: 1) What is the total gas-in-place (GIP) in the subsurface reservoirs? 2) What is the exact ratio between bulk gas content and adsorbed gas content? Both questions require precise estimation of adsorbed phase capacity of gases (methane and carbon dioxide) and their adsorption behavior in shale and coal. This dissertation therefore analyzes adsorption isotherms, thermodynamics, and kinetics properties of methane and carbon dioxide in shale and coal based on experimental results to provide preliminary answers to both questions. It was found that the dual-site Langmuir model can describe both methane and carbon dioxide adsorption isotherms in shale and coal under high pressure and high temperature conditions (up to 27 MPa and 355.15K). This allows for accurate estimation of the true methane and carbon dioxide GIP content and the relative quantity of adsorbed phases of gases at in situ temperatures and pressures representative of deep shale formations and coal seams. The concept of a deep shale gas reservoir is then proposed to optimize shale gas development methodology based on the successful application of the model for methane adsorption in shale. Based on the dual-site Langmuir model, the isosteric heat of adsorption is calculated analytically by considering both the real gas behavior and the adsorbed phase under high pressure, both of which are ignored in the classic Clausius–Clapeyron approximation. It was also found that the isosteric heat of adsorption in Henry's pressure region is independent of temperature and can serve as a quantified index to evaluate the methane adsorption affinity on coal. In order to understand the dynamic response of gas adsorption in coal for carbon sequestration, both gas adsorption kinetics and pore structure of coal are investigated. The pseudo-second order model is applied to simulate the adsorption kinetics of carbon dioxide in coals under different pressures. Coal particle size effects on pore characterization of coal and carbon dioxide and nitrogen ad/desorption behavior in coal was also investigated. === Ph. D.
author2 Mining and Minerals Engineering
author_facet Mining and Minerals Engineering
Tang, Xu
author Tang, Xu
author_sort Tang, Xu
title Measurements, Modeling and Analysis of High Pressure Gas Sorption in Shale and Coal for Unconventional Gas Recovery and Carbon Sequestration
title_short Measurements, Modeling and Analysis of High Pressure Gas Sorption in Shale and Coal for Unconventional Gas Recovery and Carbon Sequestration
title_full Measurements, Modeling and Analysis of High Pressure Gas Sorption in Shale and Coal for Unconventional Gas Recovery and Carbon Sequestration
title_fullStr Measurements, Modeling and Analysis of High Pressure Gas Sorption in Shale and Coal for Unconventional Gas Recovery and Carbon Sequestration
title_full_unstemmed Measurements, Modeling and Analysis of High Pressure Gas Sorption in Shale and Coal for Unconventional Gas Recovery and Carbon Sequestration
title_sort measurements, modeling and analysis of high pressure gas sorption in shale and coal for unconventional gas recovery and carbon sequestration
publisher Virginia Tech
publishDate 2017
url http://hdl.handle.net/10919/74237
work_keys_str_mv AT tangxu measurementsmodelingandanalysisofhighpressuregassorptioninshaleandcoalforunconventionalgasrecoveryandcarbonsequestration
_version_ 1719344233237708800