Transient behavior of liquid jets injected normal to a high velocity gas stream

The transient effects of the breakup and atomization of liquid jets in a crossflow on the size of droplets within the spray plume was experimentally determined. Water and water/methanol mixtures were injected normal to a high velocity air stream at Mach numbers of 0.48 and 3.0 with ambient stagnatio...

Full description

Bibliographic Details
Main Author: Less, David Matthew
Other Authors: Aerospace Engineering
Format: Others
Language:en_US
Published: Virginia Polytechnic Institute and State University 2015
Subjects:
Online Access:http://hdl.handle.net/10919/53887
Description
Summary:The transient effects of the breakup and atomization of liquid jets in a crossflow on the size of droplets within the spray plume was experimentally determined. Water and water/methanol mixtures were injected normal to a high velocity air stream at Mach numbers of 0.48 and 3.0 with ambient stagnation temperature and respective stagnation pressures of 1.4 and 4.3 atm. The liquids were injected at liquid-to-gas momentum flux ratios ranging from 4 to 12. Droplet size distributions were obtained using a Fraunhofer diffraction technique at sampling rates of up to 9 kHz. Liquid mass flow rates were inferred from measurements of the extinction of a laser beam traversing the plume. The droplet sizes were found to fluctuate with frequencies of the order of 1 to 10 kHz. The fluctuations were characterized by a sudden and relatively brief increase in the mean diameter of the droplets caused by the passage of fractured clumps through the spray plume. Also evident in the droplet size distributions was the very small size of the droplets that had been sheared off the windward surfaces of the jet. The jet fracture frequency was related to the frequency of waves propagating along the initial jet column. The column waves are postulated to have been caused by jet perturbations created by vortices in the air flow around the jet column. === Ph. D.