A BIM Interoperable Web-Based DSS for Vegetated Roofing System Selection

There is a body of evidence indicating that the implementation of current Architecture, Engineering, and Construction (AEC) industry business models and practices have caused negative impacts on global energy supply, ecosystems, and local or regional economies. In order to eliminate such negative im...

Full description

Bibliographic Details
Main Author: Charoenvisal, Kongkun
Other Authors: Architecture
Format: Others
Published: Virginia Tech 2015
Subjects:
Online Access:http://hdl.handle.net/10919/51953
id ndltd-VTETD-oai-vtechworks.lib.vt.edu-10919-51953
record_format oai_dc
spelling ndltd-VTETD-oai-vtechworks.lib.vt.edu-10919-519532020-09-29T05:31:10Z A BIM Interoperable Web-Based DSS for Vegetated Roofing System Selection Charoenvisal, Kongkun Architecture Jones, James R. Ragon, Scott A. Ku, Ki-Hong Grant, Elizabeth J. Turkaslan Bulbul, Muhsine Tanyel Building Information Modeling (BIM) Decision Support Systems (DSS) Vegetated Roofing Systems Industrial Foundation Classes (IFC) Integrated Practice (IP) Sustainable Architecture There is a body of evidence indicating that the implementation of current Architecture, Engineering, and Construction (AEC) industry business models and practices have caused negative impacts on global energy supply, ecosystems, and local or regional economies. In order to eliminate such negative impacts, AEC practitioners are seeking new business models in which the Building Information Modeling (BIM) technology can be considered an important technology driver. Despite the fact that the majority of AEC practitioners have used BIM tools for construction-level modeling purposes, some early adopters of BIM technology began to use BIM tools to better inform their design decisions. Corresponding to the increasing demand for decision support functionality, a number of studies showed that a part of BIM technology will be developed toward decision support and artificial intelligence domains. The use of computer-based systems to support decision making processes can usually be found in the business management field. In this field, decision support and business intelligence systems are widely used for improving the quality of managerial decisions. Because of its theories and principles, Decision Support Systems (DSS) can be considered as one of the potential information technologies that can be applied to enhance the quality of design decisions. The DSS also has the potential to be constructed as a system platform for implementing building information contained in BIM models associated with other databases, analytical models, and expert knowledge used by AEC practitioners. This study explores an opportunity to extend the capability of BIM technology toward the decision support and artificial intelligence domains by applying the theories and principles of DSS. This research comprises the development of a prototype BIM interoperable web-based DSS for vegetated roofing system selection. The prototype development can be considered a part of an ongoing research agenda focusing on the development of the integrated web-based DSS for holistic building design conducted within the College of Architecture and Urban Studies (CAUS), Virginia Tech. Through a post-use interview study, the developed prototype is used as a tool for evaluating the possibility for the DSS development and the usefulness of DSS in improving the quality of vegetated roofing system design decisions. The understanding gained from the post-use study is used to create a guideline for developing a fully functional DSS for holistic building design that will be developed in the future. Ph. D. 2015-05-01T06:00:23Z 2015-05-01T06:00:23Z 2013-11-06 Dissertation vt_gsexam:1711 http://hdl.handle.net/10919/51953 In Copyright http://rightsstatements.org/vocab/InC/1.0/ ETD application/pdf application/pdf Virginia Tech
collection NDLTD
format Others
sources NDLTD
topic Building Information Modeling (BIM)
Decision Support Systems (DSS)
Vegetated Roofing Systems
Industrial Foundation Classes (IFC)
Integrated Practice (IP)
Sustainable Architecture
spellingShingle Building Information Modeling (BIM)
Decision Support Systems (DSS)
Vegetated Roofing Systems
Industrial Foundation Classes (IFC)
Integrated Practice (IP)
Sustainable Architecture
Charoenvisal, Kongkun
A BIM Interoperable Web-Based DSS for Vegetated Roofing System Selection
description There is a body of evidence indicating that the implementation of current Architecture, Engineering, and Construction (AEC) industry business models and practices have caused negative impacts on global energy supply, ecosystems, and local or regional economies. In order to eliminate such negative impacts, AEC practitioners are seeking new business models in which the Building Information Modeling (BIM) technology can be considered an important technology driver. Despite the fact that the majority of AEC practitioners have used BIM tools for construction-level modeling purposes, some early adopters of BIM technology began to use BIM tools to better inform their design decisions. Corresponding to the increasing demand for decision support functionality, a number of studies showed that a part of BIM technology will be developed toward decision support and artificial intelligence domains. The use of computer-based systems to support decision making processes can usually be found in the business management field. In this field, decision support and business intelligence systems are widely used for improving the quality of managerial decisions. Because of its theories and principles, Decision Support Systems (DSS) can be considered as one of the potential information technologies that can be applied to enhance the quality of design decisions. The DSS also has the potential to be constructed as a system platform for implementing building information contained in BIM models associated with other databases, analytical models, and expert knowledge used by AEC practitioners. This study explores an opportunity to extend the capability of BIM technology toward the decision support and artificial intelligence domains by applying the theories and principles of DSS. This research comprises the development of a prototype BIM interoperable web-based DSS for vegetated roofing system selection. The prototype development can be considered a part of an ongoing research agenda focusing on the development of the integrated web-based DSS for holistic building design conducted within the College of Architecture and Urban Studies (CAUS), Virginia Tech. Through a post-use interview study, the developed prototype is used as a tool for evaluating the possibility for the DSS development and the usefulness of DSS in improving the quality of vegetated roofing system design decisions. The understanding gained from the post-use study is used to create a guideline for developing a fully functional DSS for holistic building design that will be developed in the future. === Ph. D.
author2 Architecture
author_facet Architecture
Charoenvisal, Kongkun
author Charoenvisal, Kongkun
author_sort Charoenvisal, Kongkun
title A BIM Interoperable Web-Based DSS for Vegetated Roofing System Selection
title_short A BIM Interoperable Web-Based DSS for Vegetated Roofing System Selection
title_full A BIM Interoperable Web-Based DSS for Vegetated Roofing System Selection
title_fullStr A BIM Interoperable Web-Based DSS for Vegetated Roofing System Selection
title_full_unstemmed A BIM Interoperable Web-Based DSS for Vegetated Roofing System Selection
title_sort bim interoperable web-based dss for vegetated roofing system selection
publisher Virginia Tech
publishDate 2015
url http://hdl.handle.net/10919/51953
work_keys_str_mv AT charoenvisalkongkun abiminteroperablewebbaseddssforvegetatedroofingsystemselection
AT charoenvisalkongkun biminteroperablewebbaseddssforvegetatedroofingsystemselection
_version_ 1719343400150368256