Evaluation of Continuous Friction Measuring Equipment (CFME) for Supporting Pavement Friction Management Programs

It is the responsibility of pavement engineers to design pavements that provide safe and smooth riding surfaces over their entire life cycle. Each year many people around the world lose their lives in vehicle crashes, which are one of the leading causes of death in the United States (US). One of the...

Full description

Bibliographic Details
Main Author: Najafi, Shahriar
Other Authors: Civil and Environmental Engineering
Format: Others
Language:en_US
Published: Virginia Tech 2015
Subjects:
Online Access:http://hdl.handle.net/10919/51244
http://scholar.lib.vt.edu/theses/available/etd-12132010-111100/
id ndltd-VTETD-oai-vtechworks.lib.vt.edu-10919-51244
record_format oai_dc
spelling ndltd-VTETD-oai-vtechworks.lib.vt.edu-10919-512442020-09-29T05:44:36Z Evaluation of Continuous Friction Measuring Equipment (CFME) for Supporting Pavement Friction Management Programs Najafi, Shahriar Civil and Environmental Engineering Flintsch, Gerardo W. Izeppi, Edgar D. de Leon McGhee, Kevin K. Wang, Linbing locked wheel CFME repeatability testing devices safety pavement reproducibility friction It is the responsibility of pavement engineers to design pavements that provide safe and smooth riding surfaces over their entire life cycle. Each year many people around the world lose their lives in vehicle crashes, which are one of the leading causes of death in the United States (US). One of the contributing factors in many of these crashes is inappropriate friction between tires and the pavement. To minimize the impact of this factor, state Departments of Transportation (DOTs) must monitor the friction of their pavement networks systematically and regularly. Several devices are used around the world for measuring friction. Locked-wheel skid trailers are the predominant technology for roadways in the U.S. However, Continues Friction Measuring Equipment (CFME) is emerging as a practical alternative, especially for network-level monitoring. This type of technology has been used for monitoring runway friction for many years and is starting to be used also for measuring roadway friction. This thesis evaluates the different operational characteristics of CFME to provide guidelines for highway agencies interested in using this technology for supporting their friction management programs. It follows a manuscript format and is composed of two papers. The first part of the thesis presents a methodology to objectively synchronize and compare CFME measurements using cross-correlation. This methodology allows for comparing the “shape” of the friction profiles, instead of only the average friction values. The methodology is used for synchronizing friction measurements and assessing the repeatability and reproducibility of the CFME using friction measurements taken on a wide range of surfaces at the Virginia Smart Road. The proposed approach provides highway agencies with a rigorous method to process CFME measurements. The second part of the thesis evaluates the impact of several operational characteristics on the CFME measurements using a field experiment. The results of the experiment confirmed that the measurements are significantly affected by (1) the direction of testing while testing on sections of road with a significant grade, (2) water film thickness, and (3) testing speed. The experiment showed that measurements taken downhill on a 6% grade were significantly higher than those taken uphill. The analysis also verified that, consistent with previous studies, the measured friction decreases with higher water depth and testing speeds. It also showed that the change of friction with speed is approximately linear over the range of speeds used in the experiment. In general, the thesis results suggest that CFME can provide repeatable and reproducible friction profiles that can be used to support friction management programs and other asset management business functions. However, care should be taken with regard to the operational conditions during testing since the measurements are affected by several factors. Further research is needed to (1) quantify the effect of these, and potentially other, operational factors; and (2) establish standard testing condition and approaches for correcting measurements taken under other conditions. Master of Science 2015-02-02T20:32:56Z 2015-02-02T20:32:56Z 2010-12-07 2010-12-13 2015-02-02 2010-12-28 Thesis etd-12132010-111100 http://hdl.handle.net/10919/51244 http://scholar.lib.vt.edu/theses/available/etd-12132010-111100/ en_US Najafi_Shahriar_T_2010.pdf In Copyright http://rightsstatements.org/vocab/InC/1.0/ ETD application/pdf Virginia Tech
collection NDLTD
language en_US
format Others
sources NDLTD
topic locked wheel
CFME
repeatability
testing devices
safety
pavement
reproducibility
friction
spellingShingle locked wheel
CFME
repeatability
testing devices
safety
pavement
reproducibility
friction
Najafi, Shahriar
Evaluation of Continuous Friction Measuring Equipment (CFME) for Supporting Pavement Friction Management Programs
description It is the responsibility of pavement engineers to design pavements that provide safe and smooth riding surfaces over their entire life cycle. Each year many people around the world lose their lives in vehicle crashes, which are one of the leading causes of death in the United States (US). One of the contributing factors in many of these crashes is inappropriate friction between tires and the pavement. To minimize the impact of this factor, state Departments of Transportation (DOTs) must monitor the friction of their pavement networks systematically and regularly. Several devices are used around the world for measuring friction. Locked-wheel skid trailers are the predominant technology for roadways in the U.S. However, Continues Friction Measuring Equipment (CFME) is emerging as a practical alternative, especially for network-level monitoring. This type of technology has been used for monitoring runway friction for many years and is starting to be used also for measuring roadway friction. This thesis evaluates the different operational characteristics of CFME to provide guidelines for highway agencies interested in using this technology for supporting their friction management programs. It follows a manuscript format and is composed of two papers. The first part of the thesis presents a methodology to objectively synchronize and compare CFME measurements using cross-correlation. This methodology allows for comparing the “shape” of the friction profiles, instead of only the average friction values. The methodology is used for synchronizing friction measurements and assessing the repeatability and reproducibility of the CFME using friction measurements taken on a wide range of surfaces at the Virginia Smart Road. The proposed approach provides highway agencies with a rigorous method to process CFME measurements. The second part of the thesis evaluates the impact of several operational characteristics on the CFME measurements using a field experiment. The results of the experiment confirmed that the measurements are significantly affected by (1) the direction of testing while testing on sections of road with a significant grade, (2) water film thickness, and (3) testing speed. The experiment showed that measurements taken downhill on a 6% grade were significantly higher than those taken uphill. The analysis also verified that, consistent with previous studies, the measured friction decreases with higher water depth and testing speeds. It also showed that the change of friction with speed is approximately linear over the range of speeds used in the experiment. In general, the thesis results suggest that CFME can provide repeatable and reproducible friction profiles that can be used to support friction management programs and other asset management business functions. However, care should be taken with regard to the operational conditions during testing since the measurements are affected by several factors. Further research is needed to (1) quantify the effect of these, and potentially other, operational factors; and (2) establish standard testing condition and approaches for correcting measurements taken under other conditions. === Master of Science
author2 Civil and Environmental Engineering
author_facet Civil and Environmental Engineering
Najafi, Shahriar
author Najafi, Shahriar
author_sort Najafi, Shahriar
title Evaluation of Continuous Friction Measuring Equipment (CFME) for Supporting Pavement Friction Management Programs
title_short Evaluation of Continuous Friction Measuring Equipment (CFME) for Supporting Pavement Friction Management Programs
title_full Evaluation of Continuous Friction Measuring Equipment (CFME) for Supporting Pavement Friction Management Programs
title_fullStr Evaluation of Continuous Friction Measuring Equipment (CFME) for Supporting Pavement Friction Management Programs
title_full_unstemmed Evaluation of Continuous Friction Measuring Equipment (CFME) for Supporting Pavement Friction Management Programs
title_sort evaluation of continuous friction measuring equipment (cfme) for supporting pavement friction management programs
publisher Virginia Tech
publishDate 2015
url http://hdl.handle.net/10919/51244
http://scholar.lib.vt.edu/theses/available/etd-12132010-111100/
work_keys_str_mv AT najafishahriar evaluationofcontinuousfrictionmeasuringequipmentcfmeforsupportingpavementfrictionmanagementprograms
_version_ 1719345741726482432